213 research outputs found

    Band structure from random interactions

    Get PDF
    The anharmonic vibrator and rotor regions in nuclei are investigated in the framework of the interacting boson model using an ensemble of random one- and two-body interactions. We find a predominance of L(P)=0(+) ground states, as well as strong evidence for the occurrence of both vibrational and rotational band structures. This remarkable result suggests that such band structures represent a far more general (robust) property of the collective model space than is generally thought.Comment: 5 pages, 4 figures, Phys. Rev. Lett., in pres

    Phase Transitions in Finite Nuclei and the Integer Nucleon Number Problem

    Full text link
    The study of spherical-deformed ground--state phase transitions in finite nuclei as a function of N and Z is hindered by the discrete values of the nucleon number. A resolution of the integer nucleon number problem, and evidence relating to phase transitions in finite nuclei, are discussed from the experimental point of view and interpreted within the framework of the interacting boson model.Comment: 8 pages Latex + 8 figs (postscript). In Phys Rev Lett, June 199

    Energy Level Statistics of the U(5) and O(6) Symmetries in the Interacting Boson Model

    Get PDF
    We study the energy level statistics of the states in U(5) and O(6) dynamical symmetries of the interacting boson model and the high spin states with backbending in U(5) symmetry. In the calculations, the degeneracy resulting from the additional quantum number is eliminated manually. The calculated results indicate that the finite boson number NN effect is prominent. When NN has a value close to a realistic one, increasing the interaction strength of subgroup O(5) makes the statistics vary from Poisson-type to GOE-type and further recover to Poisson-type. However, in the case of NN \to \infty, they all tend to be Poisson-type. The fluctuation property of the energy levels with backbending in high spin states in U(5) symmetry involves a signal of shape phase transition between spherical vibration and axial rotation.Comment: 38 pages, 13 figure

    Lifetime determination of excited states in Cd-106

    Get PDF
    Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps

    In-beam fast-timing measurements in 103,105,107Cd

    Full text link
    Fast-timing measurements were performed recently in the region of the medium-mass 103,105,107Cd isotopes, produced in fusion evaporation reactions. Emitted gamma-rays were detected by eight HPGe and five LaBr3:Ce detectors working in coincidence. Results on new and re-evaluated half-lives are discussed within a systematic of transition rates. The 7/21+7/2_1^+ states in 103,105,107Cd are interpreted as arising from a single-particle excitation. The half-life analysis of the 11/2111/2_1^- states in 103,105,107Cd shows no change in the single-particle transition strength as a function of the neutron number

    SU(3) realization of the rigid asymmetric rotor within the IBM

    Get PDF
    It is shown that the spectrum of the asymmetric rotor can be realized quantum mechanically in terms of a system of interacting bosons. This is achieved in the SU(3) limit of the interacting boson model by considering higher-order interactions between the bosons. The spectrum corresponds to that of a rigid asymmetric rotor in the limit of infinite boson number.Comment: 9 pages, 2 figures, LaTeX, epsfi
    corecore