469 research outputs found

    Multilevel HfO2-based RRAM devices for low-power neuromorphic networks

    Get PDF
    Training and recognition with neural networks generally require high throughput, high energy efficiency, and scalable circuits to enable artificial intelligence tasks to be operated at the edge, i.e., in battery-powered portable devices and other limited-energy environments. In this scenario, scalable resistive memories have been proposed as artificial synapses thanks to their scalability, reconfigurability, and high-energy efficiency, and thanks to the ability to perform analog computation by physical laws in hardware. In this work, we study the material, device, and architecture aspects of resistive switching memory (RRAM) devices for implementing a 2-layer neural network for pattern recognition. First, various RRAM processes are screened in view of the device window, analog storage, and reliability. Then, synaptic weights are stored with 5-level precision in a 4 kbit array of RRAM devices to classify the Modified National Institute of Standards and Technology (MNIST) dataset. Finally, classification performance of a 2-layer neural network is tested before and after an annealing experiment by using experimental values of conductance stored into the array, and a simulation-based analysis of inference accuracy for arrays of increasing size is presented. Our work supports material-based development of RRAM synapses for novel neural networks with high accuracy and low-power consumption. (C) 2019 Author(s)

    Coating development with modified starch and tomato powder for application in frozen dough.

    Get PDF
    Made available in DSpace on 2018-06-07T01:06:15Z (GMT). No. of bitstreams: 1 ART18023.pdf: 3157377 bytes, checksum: 1efc7c50df294f9ed6903135a6cd2f48 (MD5) Previous issue date: 2018-06-04bitstream/item/178253/1/ART18023.pd

    Temperature Dependence of Damping and Frequency Shifts of the Scissors Mode of a trapped Bose-Einstein Condensate

    Full text link
    We have studied the properties of the scissors mode of a trapped Bose-Einstein condensate of 87^{87}Rb atoms at finite temperature. We measured a significant shift in the frequency of the mode below the hydrodynamic limit and a strong dependence of the damping rate as the temperature increased. We compared our damping rate results to recent theoretical calculations for other observed collective modes finding a fair agreement. From the frequency measurements we deduce the moment of inertia of the gas and show that it is quenched below the transition point, because of the superfluid nature of the condensed gas.Comment: 5 pages, 4 figure

    Bosonizing one-dimensional cold atomic gases

    Full text link
    We present results for the long-distance asymptotics of correlation functions of mesoscopic one-dimensional systems with periodic and open (Dirichlet) boundary conditions, as well as at finite temperature in the thermodynamic limit. The results are obtained using Haldane's harmonic-fluid approach (also known as ``bosonization''), and are valid for both bosons and fermions, in weakly and strongly interacting regimes. The harmonic-fluid approach and the method to compute the correlation functions using conformal transformations are explained in great detail. As an application relevant to one-dimensional systems of cold atomic gases, we consider the model of bosons interacting with a zero-range potential. The Luttinger-liquid parameters are obtained from the exact solution by solving the Bethe-ansatz equations in finite-size systems. The range of applicability of the approach is discussed, and the prefactor of the one-body density matrix of bosons is fixed by finding an appropriate parametrization of the weak-coupling result. The formula thus obtained is shown to be accurate, when compared with recent diffusion Montecarlo calculations, within less than 10%. The experimental implications of these results for Bragg scattering experiments at low and high momenta are also discussed.Comment: 39 pages + 14 EPS figures; typos corrected, references update

    Excitations of a Bose-Einstein condensate in a one-dimensional optical lattice

    Full text link
    We investigate the low-lying excitations of a stack of weakly-coupled two-dimensional Bose-Einstein condensates that is formed by a one-dimensional optical lattice. In particular, we calculate the dispersion relations of the monopole and quadrupole modes, both for the ground state as well as for the case in which the system contains a vortex along the direction of the lasers creating the optical lattice. Our variational approach enables us to determine analytically the dispersion relations for an arbitrary number of atoms in every two-dimensional condensate and for an arbitrary momentum. We also discuss the feasibility of experimentally observing our results.Comment: 16 pages, 5 figures, minor changes,accepted for publication in Phys. Rev.

    Stable and unstable vortices in multicomponent Bose-Einstein condensates

    Full text link
    We study the stability and dynamics of vortices in two-species condensates as prepared in the recent JILA experiment (M. R. Andrews {\em et al.}, Phys. Rev. Lett. 83 (1999) 2498). We find that of the two available configurations, in which one specie has vorticity m=1m=1 and the other one has m=0m=0, only one is linearly stable, which agrees with the experimental results. However, it is found that in the unstable case the vortex is not destroyed by the instability, but may be transfered from one specie to the other or display complex spatiotemporal dynamics.Comment: 4 EPS figures, now features a three-dimensional stud

    Normal Modes of a Vortex in a Trapped Bose-Einstein Condensate

    Full text link
    A hydrodynamic description is used to study the normal modes of a vortex in a zero-temperature Bose-Einstein condensate. In the Thomas-Fermi (TF) limit, the circulating superfluid velocity far from the vortex core provides a small perturbation that splits the originally degenerate normal modes of a vortex-free condensate. The relative frequency shifts are small in all cases considered (they vanish for the lowest dipole mode with |m|=1), suggesting that the vortex is stable. The Bogoliubov equations serve to verify the existence of helical waves, similar to those of a vortex line in an unbounded weakly interacting Bose gas. In the large-condensate (small-core) limit, the condensate wave function reduces to that of a straight vortex in an unbounded condensate; the corresponding Bogoliubov equations have no bound-state solutions that are uniform along the symmetry axis and decay exponentially far from the vortex core.Comment: 15 pages, REVTEX, 2 Postscript figures, to appear in Phys. Rev. A. We have altered the material in Secs. 3B and 4 in connection with the normal modes that have |m|=1. Our present treatment satisfies the condition that the fundamental dipole mode of a condensate with (or without) a vortex should have the bare frequency $\omega_\perp

    Measurements of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of inclusive spectra and mean multiplicities of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c (s=\sqrt{s} = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter

    Multi-site campaign for transit timing variations of WASP-12 b: possible detection of a long-period signal of planetary origin

    Full text link
    The transiting planet WASP-12 b was identified as a potential target for transit timing studies because a departure from a linear ephemeris was reported in the literature. Such deviations could be caused by an additional planet in the system. We attempt to confirm the existence of claimed variations in transit timing and interpret its origin. We organised a multi-site campaign to observe transits by WASP-12 b in three observing seasons, using 0.5-2.6-metre telescopes. We obtained 61 transit light curves, many of them with sub-millimagnitude precision. The simultaneous analysis of the best-quality datasets allowed us to obtain refined system parameters, which agree with values reported in previous studies. The residuals versus a linear ephemeris reveal a possible periodic signal that may be approximated by a sinusoid with an amplitude of 0.00068+/-0.00013 d and period of 500+/-20 orbital periods of WASP-12 b. The joint analysis of timing data and published radial velocity measurements results in a two-planet model which better explains observations than single-planet scenarios. We hypothesize that WASP-12 b might be not the only planet in the system and there might be the additional 0.1 M_Jup body on a 3.6-d eccentric orbit. A dynamical analysis indicates that the proposed two-planet system is stable over long timescales.Comment: Accepted for publication in A&

    Renormalization Group Flow in Scalar-Tensor Theories. II

    Full text link
    We study the UV behaviour of actions including integer powers of scalar curvature and even powers of scalar fields with Functional Renormalization Group techniques. We find UV fixed points where the gravitational couplings have non-trivial values while the matter ones are Gaussian. We prove several properties of the linearized flow at such a fixed point in arbitrary dimensions in the one-loop approximation and find recursive relations among the critical exponents. We illustrate these results in explicit calculations in d=4d=4 for actions including up to four powers of scalar curvature and two powers of the scalar field. In this setting we notice that the same recursive properties among the critical exponents, which were proven at one-loop order, still hold, in such a way that the UV critical surface is found to be five dimensional. We then search for the same type of fixed point in a scalar theory with minimal coupling to gravity in d=4d=4 including up to eight powers of scalar curvature. Assuming that the recursive properties of the critical exponents still hold, one would conclude that the UV critical surface of these theories is five dimensional.Comment: 14 pages. v.2: Minor changes, some references adde
    corecore