3,063 research outputs found
From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites
In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5
Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study
The interface between the matrix phase and dispersed phase of a composite plays a critical role in influencing its properties. However, the intricate mecha-nisms of interface are not fully understood, and polymer nanocomposites are no exception. This study compares the fabrication, morphology, and mechanical and thermal properties of epoxy nanocomposites tuned by clay layers (denoted as m-clay) and graphene platelets (denoted as m-GP). It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface between the filler mate-rial and epoxy matrix. This was confirmed by Fourier transform infrared spectroscopy and transmission electron microscope. The enhanced interface led to improved mechanical properties (i.e. stiffness modulus, fracture toughness) and higher glass transition temperatures (Tg) compared with neat epoxy. At 4 wt% m-GP, the critical strain energy release rate G1c of neat epoxy improved by 240 % from 179.1 to 608.6 J/m2 and Tg increased from 93.7 to 106.4 �C. In contrast to m-clay, which at 4 wt%, only improved the G1c by 45 % and Tg by 7.1 %. The higher level of improvement offered by m-GP is attributed to the strong interaction of graphene sheets with epoxy because the covalent bonds between the carbon atoms of graphene sheets are much stronger than silicon-based clay
Covalently bonded interfaces for polymer/graphene composites
The interface is well known for taking a critical role in the determination of the functional and mechanical properties of polymer composites. Previous interface research has focused on utilising reduced graphene oxide that is limited by a low structural integrity, which means a high fraction is needed to produce electrically conductive composites. By using 4,40-diaminophenylsulfone, we in this study chemically modified high-structural integrity graphene platelets (GnPs) of 2–4 nm in thickness, covalently bonded GnPs with an epoxy matrix, and investigated the morphology and functional and mechanical performance of these composites. This covalently bonded interface prevented GnPs stacking in the matrix. In comparison with unmodified composites showing no reduction in electrical volume resistivity, the interface-modified composite at 0.489 vol% GnPs demonstrates an eight-order reduction in the resistivity, a 47.7% further improvement in modulus and 84.6% in fracture energy release rate. Comparison of GnPs with clay and multi-walled carbon nanotubes shows that our GnPs are more advantageous in terms of performance and cost. This study provides a novel method for developing interface-tuned polymer/graphene composites
Improvement of adhesive toughness measurement
The double cantilever beam (DCB) method for adhesive toughness measurement was improved by incorporating a sufficiently sharp crack made by a wedge-tapping method. A known route to producing cracks via loading–unloading cycles was proved unreliable because the cycles produced plastic deformation in the adhesive where new cracks propagated. Abnormally high toughness values with large standard deviations were obtained with cracks made by embedding a non-sticky insert. Only instantly propagated cracks made by tapping were sufficiently sharp to produce reproducible, accurate tough-ness measurements. However, toughened resin was insensit
Pengaruh Penggunaan Tekonologi Informasi, Efektivitas Sistem Informasi Akuntansi dan Kepercayaan Atas Sistem Informasi Akuntansi Terhadap Kinerja Karyawan PT. Bank Pembangunan Daerah Jawa Tengah Kantor Cabang Cilacap
The aimed of this study is to find out the effect of the use of information technology, effectiveness of accounting information system, trust to the accounting information system on the staff’s performances. The study was conducted at PT. Bank Pembangunan Daerah Jawa Tengah branch offices Cilacap. The sampling method used was total sampling. The number of samples collected as many as 50 staffs. The data analyzed using multiple regression analysis technique.
The results of this research showed that the use of information technology, effectiveness of accounting information system, trust to the accounting information system have effect on the staff’s performances
Development of polymer composites using modified, high-structural integrity graphene platelets
Previous studies on polymer/graphene composites have mainly utilized either reduced graphene oxide or graphite nanoplatelets of over 10 nm in thickness. In this study we covalently modified 3-nm thick graphene platelets (GnPs) by the reaction between the GnPs’ epoxide groups and the end-amine groups of a commercial long-chain surfactant (Mw = 2000), compounded the modified GnPs (m-GnPs) with a model polymer epoxy, and investigated the structure and properties of both m-GnPs and their epoxy composites. A low Raman ID/IG ratio of 0.13 was found for m-GnPs corresponding to high structural integ-rity. A percolation threshold of electrical conductivity was observed at 0.32 vol% m-GnPs, and the 0.98 vol% m-GnPs improved the Young’s modulus, fracture energy release rate and glass transition tem-perature of epoxy by 14%, 387% and 13%, respectively. These significantly improved properties are cred-ited to: (i) the low Raman ID/IG ratio of GnPs, maximizing the structural integrity and thus conductivity, stiffness and strength inherited from its sister graphene, (ii) the low thickness of GnPs, minimizing the damaging effect of the poor through-plane mechanical properties and electrical conductivity of graphene,(iii) the high-molecular weight surfactant, leading to uniformly dispersed GnPs in the matrix, and (iv) a covalently bonded interface between m-GnPs and matrix, more effectively transferring load/electron across interface
Obesity and high risk pathological features of papillary thyroid carcinoma: A retrospective analysis of a university hospital in Pakistan
BACKGROUND: Incidence of papillary thyroid carcinoma (PTC) and the frequency of obesity is increasing globally. In literature, relationship between excessive body weight and bad prognostic features of PTC is still debatable. In this study, we aimed to explore the association of obesity with high risk pathological features of PTC in a population treated by total thyroidectomy +/- neck dissection. MATERIALS AND METHODS: Retrospective analysis of patients at Aga Khan University Hospital from January 2013 to December 2014, who underwent total thyroidectomy +/- neck dissection due to PTC. Patients were grouped according to World Health Organization (WHO) classification of BMI. They were categorized into two groups, i.e. normal (BMI= 18.5 - 24.9 kg/m2) and obese (BMI = 30 kg/m2) as none of our patients lie in underweight and overweight category. Pathological features i.e. T-stage, multifocality, bilaterality, extrathyroidal extension, vascular invasion and N-stage were assessed. All tumors were staged according to TNM staging system proposed by 2010 American Joint Committee on Cancer (AJCC). Odds ratio (OR) with 95% confidence interval was used to examine the association between BMI ∧ pathological characteristics of PTC. RESULTS: A total of 53 patients were treated for PTC in two-years period. There were 38 female and 15 male patients. Twenty-eight patients had BMI in normal while twenty-five in obese category. Patients who were in obese category had a significantly greater risk of having a multifocal tumor (OR=5.55, p-value=0.02) and bilaterality (OR=6.54, p-value=0.01) compared to normal weight patients. No positive associations were identified between BMI and extrathyroidal extension, high T-stage, vascular invasion and N-stage. CONCLUSION: Obesity is not associated with high risk pathological features such as extrathyroidal extention, high T-stage, vascular invasion and N-stage in PTC. Although it has been correlated with multifocal and bilateral tumors in this retrospective study, the presence of these factors alone is not adequate to support the association conclusively
Melt compounding with graphene to develop functional, high-performance elastomers
Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer—ethylene–propylene–diene monomer rubber (EPDM)—using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment
Melt compounding with graphene to develop functional, high-performance elastomers
Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer—ethylene–propylene–diene monomer rubber (EPDM)—using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment
Interface-tuned epoxy/clay nanocomposites
Though interface has been known for a critical role in determining the properties of conventional composites, its role in polymer nanocomposites is still fragmented and in its infancy. This study synthesized a series of epoxy/clay nanocomposites with different interface strength by using three types of modifiers: ethanolamine (denoted ETH), Jeffamine� M2070 (M27) and Jeffamine� XTJ502 (XTJ). XTJ created a strong interface between clay layers and matrix because it bridged the layers with matrix by a chemical reaction as proved by Fourier transform infrared spectroscopy; M27 produced an interme-diate interface strength due to the molecular entanglement between grafted M27 chains and matrix molecules; the interface made by ETH was weak because neither chemical bridging nor molecular entanglement was involved. The studies of mechanical and thermal properties and morphology at a wide range of magnification show that the strong interface promoted the highest level of exfoliation and dispersion of clay layers, and achieved the most increment in Young’s modulus, fracture toughness and glass transition temperature (Tg) of matrix. With w1.3 wt% clay, the critical strain energy release rate G1c of neat epoxy improved from 179.0 to 384.7 J/m, 115% improvement and Tg enhanced from 93.7 to 99.
- …