40 research outputs found

    Stimuli‐Responsive Resorcin[4]arene Cavitands: Toward Visible‐Light‐Activated Molecular Grippers

    Get PDF
    Resorcin[4]arene cavitands, equipped with diverse quinone (Q) and [Ru(bpy)(2)dppz](2+)(bpy=2,2 '-bipyridine, dppz=dipyrido[3,2-a:2 ',3 '-c]phenazine) photosensitizing walls in different configurations, were synthesized. Upon visible-light irradiation at 420 nm, electron transfer from the [Ru(bpy)(2)dppz](2+)to theQgenerates the semiquinone (SQ) radical anion, triggering a large conformational switching from a flatkiteto avasewith a cavity for the encapsulation of small guests, such as cyclohexane and heteroalicyclic derivatives, in CD3CN. Depending on the molecular design, theSQradical anion can live for several minutes (approximate to 10 min) and thevasecan be generated in a secondary process without need for addition of a sacrificial electron donor to accumulate theSQstate. Switching can also be triggered by other stimuli, such as changes in solvent, host-guest complexation, and chemical and electrochemical processes. This comprehensive investigation benefits the development of stimuli-responsive nanodevices, such as light-activated molecular grippers

    19F NMR-, ESR-, and vis-NIR-spectroelectrochemical study of the unconventional reduction behaviour of a perfluoroalkylated fullerene: dimerization of the C70(CF3)10− radical anion

    Get PDF
    The most abundant isomer of C70(CF3)10 (70-10-1) is a rare example of a perfluoroalkylated fullerene exhibiting electrochemically irreversible reduction. We show that electrochemical reversibility at the first reduction step is achieved at scan rates higher than 500 V s−1. Applying ESR-, vis-NIR-, and 19F NMR-spectroelectrochemistry, as well as mass spectrometry and DFT calculations, we show that the (70-10-1)− radical monoanion is in equilibrium with a singly-bonded diamagnetic dimeric dianion. This study is the first example of 19F NMR spectroelectrochemistry, which promises to be an important method for the elucidation of redox mechanisms of fluoroorganic compounds. Additionally, we demonstrate the importance of combining different spectroelectrochemical methods and quantitative analysis of the transferred charge and spin numbers in the determination of the redox mechanism

    Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches

    Get PDF
    The development of semiquinone-based resorcin[4]arene cavitands expands the toolbox of switchable molecular grippers by introducing the first paramagnetic representatives. The semiquinone (SQ) states were generated electrochemically, chemically, and photochemically. We analyzed their electronic, conformational, and binding properties by cyclic voltammetry, ultraviolet/visible (UV/vis) spectroelectrochemistry, electron paramagnetic resonance (EPR) and transient absorption spectroscopy, in conjunction with density functional theory (DFT) calculations. The utility of UV/vis spectroelectrochemistry and EPR spectroscopy in evaluating the conformational features of resorcin[4]arene cavitands is demonstrated. Guest binding properties were found to be enhanced in the SQ state as compared to the quinone (Q) or the hydroquinone (HQ) states of the cavitands. Thus, these paramagnetic SQ intermediates open the way to six-state redox switches provided by two conformations (open and closed) in three redox states (Q, SQ, and HQ) possessing distinct binding ability. The switchable magnetic properties of these molecular grippers and their responsiveness to electrical stimuli has the potential for development of efficient molecular devices

    The Ruthenium Nitrosyl Moiety in Clusters: Trinuclear Linear ÎŒ-Hydroxido Magnesium(II)-Diruthenium(II), ÎŒ3-Oxido Trinuclear Diiron(III)–Ruthenium(II), and Tetranuclear ÎŒ4-Oxido Trigallium(III)-Ruthenium(II) Complexes

    Get PDF
    The ruthenium nitrosyl moiety, {RuNO}6, is important as a potential releasing agent of nitric oxide and is of inherent interest in coordination chemistry. Typically, {RuNO}6 is found in mononuclear complexes. Herein we describe the synthesis and characterization of several multimetal cluster complexes that contain this unit. Specifically, the heterotrinuclear ÎŒ3-oxido clusters [Fe2RuCl4(ÎŒ3-O)(ÎŒ-OMe)(ÎŒ-pz)2(NO)(Hpz)2] (6) and [Fe2RuCl3(ÎŒ3-O)(ÎŒ-OMe)(ÎŒ-pz)3(MeOH)(NO)(Hpz)][Fe2RuCl3(ÎŒ3-O)(ÎŒ-OMe)(ÎŒ-pz)3(DMF)(NO)(Hpz)] (7·MeOH·2H2O) and the heterotetranuclear ÎŒ4-oxido complex [Ga3RuCl3(ÎŒ4-O)(ÎŒ-OMe)3(ÎŒ-pz)4(NO)] (8) were prepared from trans-[Ru(OH)(NO)(Hpz)4]Cl2 (5), which itself was prepared via acidic hydrolysis of the linear heterotrinuclear complex {[Ru(ÎŒ-OH)(ÎŒ-pz)2(pz)(NO)(Hpz)]2Mg} (4). Complex 4 was synthesized from the mononuclear Ru complexes (H2pz)[trans-RuCl4(Hpz)2] (1), trans-[RuCl2(Hpz)4]Cl (2), and trans-[RuCl2(Hpz)4] (3). The new compounds 4-8 were all characterized by elemental analysis, ESI mass spectrometry, IR, UV-vis, and 1H NMR spectroscopy, and single-crystal X-ray diffraction, with complexes 6 and 7 being characterized also by temperature-dependent magnetic susceptibility measurements and Mössbauer spectroscopy. Magnetometry indicated a strong antiferromagnetic interaction between paramagnetic centers in 6 and 7. The ability of 4 and 6-8 to form linkage isomers and release NO upon irradiation in the solid state was investigated by IR spectroscopy. A theoretical investigation of the electronic structure of 6 by DFT and ab initio CASSCF/NEVPT2 calculations indicated a redox-noninnocent behavior of the NO ancillary ligand in 6, which was also manifested in TD-DFT calculations of its electronic absorption spectrum. The electronic structure of 6 was also studied by an X-ray charge density analysis

    Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria

    Get PDF
    Supported atomic metal sites have discrete molecular orbitals. Precise control over the energies of these sites is key to achieving novel reaction pathways with superior selectivity. Here, we achieve selective oxygen (O2) activation by utilising a framework of cerium (Ce) cations to reduce the energy of 3d orbitals of isolated copper (Cu) sites. Operando X-ray absorption spectroscopy, electron paramagnetic resonance and density-functional theory simulations are used to demonstrate that a [Cu(I)O2]3− site selectively adsorbs molecular O2, forming a rarely reported electrophilic η2-O2 species at 298 K. Assisted by neighbouring Ce(III) cations, η2-O2 is finally reduced to two O2−, that create two Cu–O–Ce oxo-bridges at 453 K. The isolated Cu(I)/(II) sites are ten times more active in CO oxidation than CuO clusters, showing a turnover frequency of 0.028 ± 0.003 s−1 at 373 K and 0.01 bar PCO. The unique electronic structure of [Cu(I)O2]3− site suggests its potential in selective oxidation
    corecore