54 research outputs found

    Use of the Water Erosion Prediction Project (WEPP) Model to Predict Road Surface Erosion in Mountain Rangeland Areas

    Get PDF
    A significant source of sediment in many watersheds is that associated with the layout, construction, and maintenance of roadways. Much work has been done in more mesic forested environments with little or none in semiarid systems. Acc urate estimation of runoff and sediment yield from native surfaced roads located in semiarid mountainous ecosystems is important to both private and public regulatory agencies. The Watershed Erosion Prediction Project (WEPP) model represents the most current erosion prediction technology. WEPP has been applied to the problems of logging road erosion in more mesic forests but has not been tested or evaluated on roadways located in semiarid mountainous ecosystems. Six rainfall simulation experiments were conducted to measure runoff and sediment yield off three separate plots located on Tickville Road, located on Camp W.G. Williams, a National Guard Training Center in Utah . These data were compared with runoff and erosion estimates produced by the WEPP model. WEPP cropland and rangeland erodibility equations were used to predict rill erodibility (Kr), interrill erodibility (Ki), and critical shear (TAUc). These were tested for their effectiveness in predicting road erodibilities in these environments. A sensitivity analysis was performed on those parameters that were suspected of having a substantial impact on model output and accuracy. There was an excellent correlation between predicted and observed total runoff volumes for all simulations (R2= 0.96). The differences were greater than 10% only for plot 2 wet; otherwise, the average difference for all six simulations was 4.9%. When using Kr, K.i , and TAUc as predicted by rangeland methods, predicted sediment yields differed from those measured, on average, by 82%. Predicted sediment yields differed by only 22% compared to calculated sediment yields, when using the cropland erodibility equations to predict Kr, K.i , and TAUc. A sensitivity analysis showed that percent slope, slope length, days since last tillage, and ridge roughness all had a significant impact on WEPP predicted sediment yields. Results show the effectiveness of the WEPP model in predicting runoff and erosion off native surfaced roads in these semiarid mountainous regions

    Music in the waiting room

    No full text

    An analysis of long-term regional-scale ozone simulations over the Northeastern United States: variability and trends

    Get PDF
    This study presents the results from two sets of 18-year air quality simulations over the Northeastern US performed with a regional photochemical modeling system. These two simulations utilize different sets of lateral boundary conditions, one corresponding to a time-invariant climatological vertical profile and the other derived from monthly mean concentrations extracted from archived ECHAM5-MOZART global simulations. The objective is to provide illustrative examples of how model performance in several key aspects – trends, intra- and interannual variability of ground-level ozone, and ozone/precursor relationships – can be evaluated against available observations, and to identify key inputs and processes that need to be considered when performing and improving such long-term simulations. To this end, several methods for comparing observed and simulated trends and variability of ground level ozone concentrations, ozone precursors and ozone/precursor relationships are introduced. The application of these methods to the simulation using time-invariant boundary conditions reveals that the observed downward trend in the upper percentiles of summertime ozone concentrations is captured by the model in both directionality and magnitude. However, for lower percentiles there is a marked disagreement between observed and simulated trends. In terms of variability, the simulations using the time-invariant boundary conditions underestimate observed inter-annual variability by 30%–50% depending on the percentiles of the distribution. The use of boundary conditions from the ECHAM5-MOZART simulations improves the representation of interannual variability but has an adverse impact on the simulated ozone trends. Moreover, biases in the global simulations have the potential to significantly affect ozone simulations throughout the modeling domain, both at the surface and aloft. The comparison of both simulations highlights the significant impact lateral boundary conditions can have on a regional air quality model's ability to simulate long-term ozone variability and trends, especially for the lower percentiles of the ozone distribution

    Fabrication of an electro-optical Bragg modulator based on plasma dispersion effect in silicon

    No full text
    In this paper we present a design as well as the fabrication procedure of a new type of electro-optical modulator based on plasma dispersion effect. The device consists from a regular single mode silicon waveguide and periodically patterned electrodes made out an indium thin oxide (ITO) located along both sides of the optical core through which the photonic signal is propagating. By applying voltage on the electrodes a periodic change in the free electrons is occurred along the optical core. This change affects both the imaginary and real part of the refractive index resulting in the generation of periodic change in the refractive index that creates an effective Bragg reflector. Different fabrication strategies are reported
    • …
    corecore