7,466 research outputs found
Surface-peaked effective mass in the nuclear energy density functional and its influence on single-particle spectra
Calculations for infinite nuclear matter with realistic nucleon-nucleon
interactions suggest that the isoscalar effective mass of a nucleon at the
saturation density, m*/m, equals 0.8 +/- 0.1. This result is at variance with
empirical data on the level density in finite nuclei, which are consistent with
m*/m ~ 1. Ma and Wambach suggested that these two contradicting results may be
reconciled within a single theoretical framework by assuming a radial-dependent
effective mass, peaked at the nuclear surface. The aim of this exploratory work
is to investigate this idea within the density functional theory by using a
Skyrme-type local functional enriched with new terms, and , where and
denote the kinetic and particle densities, respectively. We show that each of
these terms can give rise to a surface peak in the effective mass, but of a
limited height. We investigate the influence of the radial profile of the
effective mass on the spin-orbit splittings and centroids. In particular, we
demonstrate that the term quenches the 1f5/2-1f7/2
splitting in 40Ca, which is strongly overestimated within conventional Skyrme
parametrizations.Comment: 8 pages, 8 figures, submitted to Phys. Rev.
Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Sciences Congress at Rostock University, Germany, 19-22 March 2007
The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions
Semi-leptonic B decays into higher charmed resonances
We apply HQET to semi-leptonic meson decays into a variety of excited
charm states. Using three realistic meson models with fermionic light degrees
of freedom, we examine the extent that the sum of exclusive single charmed
states account for the inclusive semi-leptonic decay rate. The consistency
of form factors with the Bjorken and Voloshin sum rules is also investigated.Comment: Latex, 27 pages. A few references and errors corrected, to appear in
Phys. Rev.
Pulsations and Long-Term Light Variability of Three Candidates to Protoplanetary Nebulae
We present new photometric data and analysis of the long-duration UBV
photoelectric observations for three candidates to protoplanetary objects -
F-supergiants with IR-excesses located at large galactic latitudes, IRAS
18095+2704, IRAS 19386+0155, and IRAS 19500-1709. All three stars have revealed
quasiperiodic low-amplitude variabilities caused by pulsations observed against
the long-term trends of brightnesses. For IRAS 18095+2704=V887 Her we have
found a pulsation period of 109 days and a linear trend of brightness under the
constant colours if being averaged over the year timescale. The light curve of
IRAS 19386+0155=V1648 Aql over 2000-2008 can be approximated by a wave with a
main period of 102 days which is modulated by close frequency, with a period of
98 days, that results in brightness oscillations with a variable amplitude.
V1648 Aql has also shown synchronous reddening together with a persistent rise
of brightness in the V-band. IRAS 19500-1709=V5112 Sgr experiences irregular
pulsations with the periods of 39 and 47 days. The long-term component of the
variability of V5112 Sgr may be related to the binary character of this star.Comment: 11 pages, 6 figures, accepted for publication in Pis'ma Astron. Z
The TTIK approach for neutrons
We applied Thick Target Inverse Kinematics Method for a study of resonances
decaying through neutron emission. As a test we used a well-studied, because of
its role in s-process in stars, C(; n) reaction. The observed
energy resolution for the C(; n) excitation function was
60 keV, the largest contributions coming from the time structure of the
beam and the thickness of the neutron detector. These measurements demonstrated
the high efficiency of the approach and revealed a disagreement with R-matrix
calculations based on parameters of the most recent previous analysis
The nuclear energy density functional formalism
The present document focuses on the theoretical foundations of the nuclear
energy density functional (EDF) method. As such, it does not aim at reviewing
the status of the field, at covering all possible ramifications of the approach
or at presenting recent achievements and applications. The objective is to
provide a modern account of the nuclear EDF formalism that is at variance with
traditional presentations that rely, at one point or another, on a {\it
Hamiltonian-based} picture. The latter is not general enough to encompass what
the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties
associated with the fact that currently available parametrizations of the
energy kernel at play in the method do not derive from a genuine
Hamilton operator, would the latter be effective. The method is formulated from
the outset through the most general multi-reference, i.e. beyond mean-field,
implementation such that the single-reference, i.e. "mean-field", derives as a
particular case. As such, a key point of the presentation provided here is to
demonstrate that the multi-reference EDF method can indeed be formulated in a
{\it mathematically} meaningful fashion even if does {\it not} derive
from a genuine Hamilton operator. In particular, the restoration of symmetries
can be entirely formulated without making {\it any} reference to a projected
state, i.e. within a genuine EDF framework. However, and as is illustrated in
the present document, a mathematically meaningful formulation does not
guarantee that the formalism is sound from a {\it physical} standpoint. The
price at which the latter can be enforced as well in the future is eventually
alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics
Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
Influence of Impact Parameter on Thermal Description of Relativistic Heavy Ion Collisions at GSI/SIS
Attention is drawn to the role played by the size of the system in the
thermodynamic analysis of particle yields in relativistic heavy ion collisions
at SIS energies. This manifests itself in the non-linear dependence of K+ and
K- yields in collisions at 1 -- 2 A.GeV on the number of participants. It
is shown that this dependence can be quantitatively well described in terms of
a thermal model with a canonical strangeness conservation. The measured
particle multiplicity ratios (pi+/p, pi-/pi+, d/p, K+/pi+ and K+/K- but not
eta/pi0) in central Au-Au and Ni-Ni collisions at 0.8 -- 2.0 A.GeV are also
explained in the context of a thermal model with a common freeze-out
temperature and chemical potential. Including the concept of collective flow a
consistent picture of particle energy distributions is derived with the flow
velocity being strongly impact-parameter dependent.Comment: revtex, 20 figure
S to P wave form factors in semi-leptonic B decays
We apply HQET to semi-leptonic and meson decays into the observed
charmed wave states. In order to examine the sensitivity of the results to
the choice of a specific model, we perform all calculations using several
different meson models, and find that uncertainty introduced by the choice of a
particular model is about 30\%. Specifically, assuming and
, we obtain branching ratios of and for B\rar D_{1}l\bar{\nu}_{l} and B\rar D_{2}^{*}l\bar{\nu}_{l}
decays, respectively.Comment: Latex (uses epsf macro), 36 pages of text, 11 postscript figures
include
Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP
An experimental study of the normalized three-jet rate of b quark events with
respect to light quarks events (light= \ell \equiv u,d,s) has been performed
using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by
the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are
found to agree with theoretical predictions treating mass corrections at
next-to-leading order. Measurements of the b quark mass have also been
performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data
are found to be better described when using the running mass. The measurement
yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12
(theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise
measurement of the b mass derived from a high energy process. When compared to
other b mass determinations by experiments at lower energy scales, this value
agrees with the prediction of Quantum Chromodynamics for the energy evolution
of the running mass. The mass measurement is equivalent to a test of the
flavour independence of the strong coupling constant with an accuracy of 7
permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.
- …