12 research outputs found
Individual Radiosensitivity Assessment of the Families of Ataxia-Telangiectasia Patients by G2-Checkpoint Abrogation
Objectives: Ataxia-telangiectasia (A-T) is an autosomal recessive multisystem disorder characterised by cerebellar degeneration, telangiectasia, radiation sensitivity, immunodeficiency, oxidative stress and cancer susceptibility. Epidemiological research has shown that carriers of the heterozygous ataxia-telangiectasia mutated (ATM) gene mutation are radiosensitive to ionising irradiation and have a higher risk of cancers, type 2 diabetes and atherosclerosis. However, there is currently no fast and reliable laboratory-based method to detect heterozygous ATM carriers for family screening and planning purposes. This study therefore aimed to evaluate the ability of a modified G2-assay to identify heterozygous ATM carriers in the families of A-T patients. Methods: This study took place at the Tehran University of Medical Sciences, Tehran, Iran, between February and December 2017 and included 16 A-T patients, their parents (obligate heterozygotes) and 30 healthy controls. All of the subjects underwent individual radiosensitivity (IRS) assessment using a modified caffeine-treated G2-assay with G2-checkpoint abrogation. Results: The mean IRS of the obligate ATM heterozygotes was significantly higher than the healthy controls (55.13% ± 5.84% versus 39.03% ± 6.95%; P <0.001), but significantly lower than the A-T patients (55.13% ± 5.84% versus 87.39% ± 8.29%; P = 0.001). A receiver operating characteristic (ROC) curve analysis of the G2-assay values indicated high sensitivity and specificity, with an area under the ROC curve of 0.97 (95% confidence interval: 0.95–1.00). Conclusion: The modified G2-assay demonstrated adequate precision and relatively high sensitivity and specificity in detecting heterozygous ATM carriers.
Keywords: Ataxia-Telangiectasia; Chromosome Breakage; Genetic Carrier Screening; Heterozygote; Radiation Sensitivity; Sensitivity and Specificity
Resistance of human primary mesenchymal stem cells to cytotoxic effects of nutlin‐3 in vitro
Background The small-molecule nutlin-3 was found to be an effective therapeutic compound and p53 activator, and acts as a murine double minute 2 antagonist, although these findings need to be clinically confirmed. The essential components of the bone marrow include mesenchymal stem cells (MSCs), which play a key role in protecting, regenerating, and proliferating hematopoietic stem cells (HSCs). This feature is vital for HSC after exposure to myelotoxic anticancer agents; nevertheless, the effects of nutlin-3 on MSCs remain to be disclosed. The present research study was conducted to examine the antiproliferative and proapoptotic effectiveness of nutlin-3 in bone marrow MSCs (BMSCs). Materials and Methods Human-derived BMSCs were cultured for different durations, that is, 24, 48, and 72 hours, and treated using various concentrations of nutlin-3, including 5, 10, 25, 50, and 100 mu M. To investigate the effect of nutlin-3 on the apoptosis, cell vitality and proliferation in BMSCs, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), thiazolyl blue tetrazolium bromide, propidium iodide (PI) and annexin V assay, as well as real-time polymerase chain reaction, were used. Results BMSCs viability significantly decreased (P < .05) in the cells treated at concentrations of 50 and 100 mu M for 24 hours and concentrations of 25, 50, and 100 mu M for 48 hours and at all concentrations for 72 hours. The apoptosis of BMSCs (TUNEL positive) was significantly more visible at concentrations of 25 and 50 mu M compared with that in the controls (P < .05), while this increased through dose-dependent processes. Annexin V/PI staining revealed negligible dose-dependent increases in all the apoptotic cells after 72 hours of incubation, and this apoptosis elevation was significant at 25 and 50 mu M (P < .05). Conclusion Resistance to nutlin-3 was observed in human bone marrow-derived MSCs; nevertheless, further clinical data are required to be obtained with long-duration exposure to confirm the present findings
MicroRNAs networks in thyroid cancers: focus on miRNAs related to the fascin
miRNAs are non coding ribonucleic acids which are protected with respect to evolution, and have a length of 18–25 nucleotides. microRNAs control the gene expression after transcription, through mRNA destruction or translation processing, and therefore participate in arrangement of the physiologic and pathologic cellular processes; They also may act as oncogene or tumor suppressors. Altered expression of a number of microRNAs is reported in process of progression and metastasis of thyroid cancers. Therefore, identification of these microRNAs may shed a light to oncogenesis pathway of thyroid cancers and their metastasis. In addition, microRNAs might apply as potential biological markers in diagnosis and treatment of thyroid cancers. The changes made in miRNAs profile of thyroid cancers are reviewed in this paper
Essential genes in thyroid cancers: focus on fascin
Although thyroid cancers are not among common malignancies, they rank as the first prevalent endocrine cancers in human. According to the results of published studies it has been shown the gradual progress from normal to the neoplastic cell in the process of tumor formation is the result of sequential genetic events. Among them we may point the mutations and rearrangements occurred in a group of proto-oncogenes, transcription factors and metastasis elements such as P53, RAS,RET,BRAF, PPARγ and Fascin. In the present article,we reviewed the most important essential genes in thyroid cancers, the role of epithelial mesenchymal transition and Fascin has been highlighted in this paper
Phospho-SMC1 in-Cell ELISA based Detection of Ataxia Telangiectasia
BackgroundAtaxia telangiectasia (A-T) is a common genetically inherited cause of early childhood-onset ataxia. The infrequency of this disease, vast phenotype variation, disorders with features similar to those of A-T, and lack of definite laboratory test, make diagnosis difficult. In addition, there is no rapid reliable laboratory method for identifying A-T heterozygotes, who susceptible to ionizing radiation (IR), atherosclerosis, diabetes, and cancers. We used SMC1pSer966 (pSMC1) in-cell colorimetric ELISA to diagnosis and screen in A-T families.Materials and Methods: With informed consent, 2cc peripheral blood was collected from the 15 A-T patients, their parents, and 24 healthy controls with no family history of malignancy, diabetes, and atherosclerosis. Extracted peripheral blood mononuclear cells (PBMCs) were cultured in poly-L-Lysine treated 96-well plate with density of 70,000 cells per well. SMC1 phosphorylation was evaluated with cell-based ELISA kit 1 hour after 5 Gy IR and the pSMC1data normalized with Glyceraldehyde-3-phosphate dehydrogenase (GAPDH).Results: SMC1 phosphorylation was significantly low in A-T`s PBMC (mean + standard deviation [SD]: 0.075 + 0.034) in comparison to carriers (mean + SD: 0.190 + 0.060) and healthy controls (mean + SD: 0.312 +0.081), but unluckily could only discriminate A-T patients (Area Under the Curve -receiver operating characteristic [AUC-ROC]: 1.00, 1.00-1.00). This method in spite of rapidness and simplicity showed poor imprecision (22.49% coefficient of variation [CV] for intraday imprecision).Conclusion: It seems pSMC1 assessment by in-cell ELISA can be used for detection of A-T patients, but it may not sensitive enough for identification of carriers. This ELISA test is very simple, rapid, and requires less than 2cc blood. Thus it may be proposed for the early differential diagnosis of A-T as an alternative method
Clinical, Immunological, and Genetic Features in Patients with Activated PI3Kδ Syndrome (APDS): a Systematic Review
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a novel primary immunodeficiency (PID) caused by heterozygous gain of function mutations in PI3Kδ catalytic p110δ (PIK3CD) or regulatory p85α (PIK3R1) subunits leading to APDS1 and APDS2, respectively. Patients with APDS present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation. We searched PubMed, Web of Science, and Scopus databases for APDS patients and screened for eligibility criteria. A total of 243 APDS patients were identified from 55 articles. For all patients, demographic, clinical, immunologic, and molecular data were collected. Overall, 179 APDS1 and 64 APDS2 patients were identified. The most common clinical manifestations were respiratory tract infections (pneumonia (43.6%), otitis media (28.8%), and sinusitis (25.9%)), lymphoproliferation (70.4%), autoimmunity (28%), enteropathy (26.7%), failure to thrive (20.6%), and malignancy (12.8%). The predominant immunologic phenotype was hyper-IgM syndrome (48.1%). Immunologic profiling showed decreased B cells in 74.8% and CD4+ T cells in 64.8% of APDS patients. The c.3061 G>A (p. E1021K) mutation in APDS1 with 85% frequency and c.1425+1 G> (A, C, T) (p.434–475del) mutation in APDS2 with 79% frequency were hotspot mutations. The majority of APDS patients were placed on long-term immunoglobulin replacement therapy. Immunosuppressive agents such as rituximab, tacrolimus, rapamycin, and leniolisib were also administered for autoimmunity and inflammatory complications. In addition, hematopoietic stem cell transplantation (HSCT) was used in 12.8% of patients. APDS has heterogynous clinical manifestations. It should be suspected in patients with history of recurrent respiratory infections, lymphoproliferation, and raised IgM levels. Moreover, HSCT should be considered in patients with severe and complicated clinical manifestations with no or insufficient response to the conventional therapies.This work was supported by vice chancellor for research, Alborz University of Medical Sciences, under Grant No. IR.ABZUMS.REC.1397.051.Peer reviewe
Polyautoimmunity in Patients with LPS-Responsive Beige-Like Anchor (LRBA) Deficiency
<p><b>Background</b>: Polyautoimmunity is defined as the presence of more than one autoimmune disorder in a single patient. Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) deficiency is one of the monogenic causes of polyautoimmunity. The aim of this study was to report the characteristics of polyautoimmunity in patients with LRBA deficiency.</p> <p><b>Methods</b>: A total of 14 LRBA deficiency patients with confirmed autoimmunity were enrolled in this study. For those patients with polyautoimmunity, demographic information, clinical records, laboratory, and molecular data were collected. We also compared our results with the currently reported patients with LRBA deficiency associated with polyautoimmunity.</p> <p><b>Results</b>: In 64.2% (9 out of 14) of patients, autoimmunity presented as polyautoimmunity. In these patients, autoimmune cytopenias were the most frequent complication, observed in seven patients. Three patients presented with four different types of autoimmune conditions. The review of the literature showed that 41 of 72 reported LRBA deficient patients (74.5%) had also polyautoimmunity, with a wide spectrum of autoimmune diseases described. Hematopoietic stem cell transplantation is increasingly used as the treatment for patients with severe polyautoimmunity associated to LRBA deficiency.</p> <p><b>Conclusions</b>: Mutation in LRBA gene is one of the causes of monogenic polyautoimmunity. Awareness of this association is important in order to make an early diagnosis and prompt treatment.</p