43 research outputs found

    Multidrug-resistance and presence of class 1 integrons in clinical isolates of Salmonella enterica serotype Enteritidis, circulating in Armenia

    Get PDF
    Abstract. The aim of this work was detection of class 1 integrons and their contribution to the antimicrobial resistance phenotypes in strains of   subspecies enterica serotype Enteritidis. S. Enteritidis strains (n = 29) were isolated from patients with salmonellosis at “Nork” Clinical Hospital of Infectious Diseases, Yerevan, Republic of Armenia. High prevalence of multi-drug resistance (MDR) phenotypes was revealed and isolates with MDR phenotypes which are rare in the S. Enteritidis serotype were observed. Class 1 integrons were detected in 27,6% of isolates, with the prevalence of a variable region of 1000 bp. Occurrence of the MDR phenotype was more frequent in integron-positive isolates compared to integron-negative isolates of S. Enteritidis. Further studies are necessary to reveal the genetic background of MDR phenotypes and to estimate the genetic kinship among the isolates. Our results suggest a rapid and large-scale penetration of antibiotic resistance genes into populations of S. Enteritidis, which complicates infection control. More rigorous regulations should be imposed on antibiotic use, together with a vigilant epidemiological surveillance, to prevent the emergence and spread of MDR S. Enteritidis

    Fabrication of Cu-W Nanocomposites by Integration of Self-Propagating High-Temperature Synthesis and Hot Explosive Consolidation Technologies

    Get PDF
    Manufacturing W-Cu composite nanopowders was performed via joint reduction of CuO and WO3 oxides with various ratios (W:Cu = 2:1, 1:1, 1:3, 1:13.5) using combined Mg–C reducer. Combustion synthesis was used to synthesize homogeneous composite powders of W-Cu and hot explosive consolidation (HEC) technique was utilized to fabricate dense compacts from ultrafine structured W-Cu powders. Compact samples obtained from nanometer sized SHS powders demonstrated weak relation between the susceptibility and the applied magnetic field in comparison with the W and Cu containing micrometer grain size of metals. The density, microstructural uniformity and mechanical properties of SHS&HEC prepared samples were also evaluated. Internal friction (Q-1) and Young modulus (E) of fabricated composites studied for all samples indicated that the temperature 1000 °С is optimal for full annealing of microscopic defects of structure and internal stresses. Improved characteristics for Young modulus and internal friction were obtained for the W:Cu = 1:13.5 composite. According to microhardness measurement results, W-Cu nanopowders obtained by SHS method and compacted by HEC technology were characterized by enhanced (up to 85%) microhardness

    The impact of formative testing on study behaviour and study performance of (bio)medical students: a smartphone application intervention study.

    Get PDF
    BACKGROUND: Formative testing can increase knowledge retention but students often underuse available opportunities. Applying modern technology to make the formative tests more attractive for students could enhance the implementation of formative testing as a learning tool. This study aimed to determine whether formative testing using an internet-based application ("app") can positively affect study behaviour as well as study performance of (bio)medical students. METHODS: A formative testing app "Physiomics, to the next level" was introduced during a 4-week course to a large cohort (n = 461) of Dutch first year (bio)medical students of the Radboud University. The app invited students to complete 7 formative tests throughout the course. Each module was available for 3-4 days to stimulate the students to distribute their study activities throughout the 4-week course. RESULTS: 72% of the students used the app during the course. Study time significantly increased in intensive users (p < 0.001), while no changes were observed in moderate (p = 0.07) and non-users (p = 0.25). App-users obtained significantly higher grades during the final exam of the course (p < 0.05). Non-users more frequently failed their final exam (34%, OR 3.6, 95% CI: 2.0-6.4) compared to moderate users (19%) and intensive users (12%). Students with an average grade <6.5 during previous courses benefitted most from the app, as intensive (5.8 ± 0.9 / 36%) and moderate users (5.8 ± 0.9 / 33%) obtained higher grades and failed their exam less frequently compared to non-users (5.2 ± 1.1 / 61%). The app was also well appreciated by students; students scored the app with a grade of 7.3 ± 1.0 out of 10 and 59% of the students indicated that they would like the app to be implemented in future courses. CONCLUSIONS: A smartphone-based application of formative testing is an effective and attractive intervention to stimulate study behaviour and improve study performance in (bio) medical students

    Development of the mining of fireclays and kaolins in the Ukraine

    No full text

    Modified Polyethylene Foam for Critical Environments

    No full text
    One of the most important priorities for all countries with property beyond the Arctic Circle and territories located in permafrost areas is the development of special construction technologies and systems. The required conditions are met by insulation systems based on seamless insulation shells made of polyethylene foam. The study of the strength and performance properties of polyethylene foam and its combinability was carried out according to standard methods and using the methods of experimental design and the analytical processing of the results. The change in material properties at negative temperatures was determined based on the results of climatic tests, followed by an evaluation of creep under load. The evaluation of the effectiveness of the design solutions was carried out using special computer programs. It was found that the performance characteristics of products made of polyethylene foam (rolls, mats) meet the requirements for insulation materials used at temperatures down to −60 °C. The resulting material is moderately combustible, which must be taken into account when developing recommendations for its use in insulation systems. A nomogram has been developed that makes it possible to predict the properties of a material and solve formulation problems. Insulation systems were developed, and a visualisation of the thermal fields of the insulation systems of the external walls and ceilings of a building was carried out

    Foam Polymers in Multifunctional Insulating Coatings

    No full text
    The application of foamed polymers as one of the components of insulating coatings allows to solve the problems of energy saving and creation of optimal operating conditions for constructions. The systems of application of energy-efficient heat-insulating materials must consider both the particularities of the insulating materials and the functional orientation of the constructions. The implementation of the concept of seamless insulating coatings implies the achievement of thermal effect and reduction in air permeability both by means of the application of thermal insulation with low thermal conductivity and the minimization of junctions between separate elements of the insulating coating, which is achieved using elastic foamed polymers and, first of all, polyethylene foam. Construction of seamless insulating coatings creates practically impermeable heat, vapor, and water barriers along the outer perimeter of the insulated object. Multilayer products based on polyethylene foam represent a relatively new material—a fact that requires examination of their properties, as well as under various operating conditions, and development of a methodology for evaluation of the operational resistance of these materials in structures of different purposes, including cold conservation. The performed tests have shown that the compressive strength at 10% deformation is determined by the function of load application area and varies from 70 kPa during the test of cube samples of 10 × 10 × 10 in size to 260 kPa for areas exceeding 100 m2. The longitudinal tensile strength amounts to 80–92 kPa, and the strength of the weld seam is equal to 29–32 kPa. It has been established that the values of thermal conductivity of polyethylene foam with an average density of 18–20 kg/m3 amounts to 0.032–0.034 W/(m·K), diffusion moisture absorption is equal to 0.44 kg/m2 without a metallized coating and 0.37 kg/m2 with a metallized coating; water absorption after partial immersion in water for 24 h amounts to 0.013 kg/m2; water absorption by volume after complete water immersion for 28 days is equal to 0.96%. The material does not practically change its properties under conditions of long-term temperature alteration from −60 to +70 °C. The developed and implemented insulation systems for protective surfaces of framed construction objects, rubbhalls and frameless structures, floating floors, indoor ice rinks, and snow conservation systems are presented
    corecore