52 research outputs found

    Comparisons between Tethyan Anorthosite-bearing Ophiolites and Archean Anorthosite-bearing Layered Intrusions: Implications for Archean Geodynamic Processes

    Get PDF
    Elucidating the petrogenesis and geodynamic setting(s) of anorthosites in Archean layered intrusions and Tethyan ophiolites has significant implications for crustal evolution and growth throughout Earth history. Archean anorthosite-bearing layered intrusions occur on every continent. Tethyan ophiolites occur in Europe, Africa, and Asia. In this contribution, the field, petrographic, petrological, and geochemical characteristics of 100 Tethyan anorthosite-bearing ophiolites and 155 Archean anorthosite-bearing layered intrusions are compared. Tethyan anorthosite-bearing ophiolites range from Devonian to Paleocene in age, are variably composite, contain anorthosites with highly calcic (An44-100) plagioclase and magmatic amphibole. These ophiolites formed predominantly at convergent plate margins, with some forming in mid-ocean ridge, continental rift, and mantle plume settings. The predominantly convergent plate margin tectonic setting of Tethyan anorthosite-bearing ophiolites is indicated by negative Nb and Ti anomalies and magmatic amphibole. Archean anorthosite-bearing layered intrusions are Eoarchean to Neoarchean in age, have megacrystic anorthosites with highly calcic (An20-100) plagioclase and magmatic amphibole and are interlayered with gabbros and leucogabbros and intrude pillow basalts. These Archean layered intrusions are interpreted to have predominantly formed at convergent plate margins, with the remainder forming in mantle plume, continental rift, oceanic plateau, post-orogenic, anorogenic, mid-ocean ridge, and passive continental margin settings. These layered intrusions predominantly crystallized from hydrous Ca- and Al-rich tholeiitic magmas. The field, petrographic and geochemical similarities between Archean and Tethyan anorthosites indicate that they were produced by similar geodynamic processes mainly in suprasubduction zone settings. We suggest that Archean anorthosite-bearing layered intrusions and spatially associated greenstone belts represent dismembered subduction-related Archean ophiolites

    Мetamorphic Evolution and the Composition of the Protolith of Plagioclase-bearing Eclogite-Amphibolites of the Buchim Block of the Serbo-Macedonian Massif, Macedonia

    Get PDF
    Mineral equilibria are studied in plagioclase-bearing eclogite-amphibolites and associated garnet-clinopyroxene-amphibolc-plagioclase crystalline schists of the Buchim Block of the Serbo-Macedonian Massif. The rocks contain the following stable minerals: clinopyroxene of the Aug-Na-Aug-Omp series with a Jd content from 5 to 34%, garnet with a distinct prograde zoning, hastingsite-tschermakite-pargasite hornblende, and oligoclase

    Isotopic composition of oxygen, carbon, and sulfur in interstitial water and cores at DSDP Leg 59 Holes

    No full text
    Comprehensive isotopic studies based on data from the Deep Sea Drilling Project have elucidated numerous details of the low- and high-temperature mechanisms of interaction between water and rocks of ocean crustal seismic Layers 1 and 2. These isotopic studies have also identified climatic changes during the Meso-Cenozoic history of oceans. Data on the abundance and isotopic composition of sulfur in the sedimentary layer as well as in rocks of the volcanic basement are more fragmentary than are oxygen and carbon data. In this chapter we specifically concentrate upon isotopic data related to specific features of the mechanisms of low-temperature interaction of water with sedimentary and volcanogenic rocks. The Leg 59 data provide a good opportunity for such lithologic and isotopic studies, because almost 600 meters of basalt flows and sills interbedded with tuffs and volcaniclastic breccias were cored during the drilling of Hole 448A. Moreover, rocks supposedly exposed to hydrothermal alteration play an important role at the deepest horizons of that mass. Sulfur isotopic studies of the character of possible biogenic processes of sulfate reduction in sediments are another focus, as well as the nature and origin of sulfide mineralization in Layer-2 rocks of remnant island arcs. Finally, oxygen and carbon istopic analyses of biogenic carbonates in the cores also enabled us to investigate the effects of changing climatic conditions during the Cenozoic. These results are compared with previous data from adjacent regions of the Pacific Ocean. Thus this chapter describes results of isotopic analyses of: oxygen and sulfur of interstitial water; oxygen and carbon of sedimentary carbonates and of calcite intercalations and inclusions in tuffs and volcaniclastic breccias interbedded with basalt flows; and sulfur of sulfides in these rocks
    corecore