47 research outputs found

    Effect of angular opening on the dynamics of relativistic hydro jets

    Full text link
    Context. Relativistic jets emerging from AGN cores transfer energy from the core to their surrounding ISM/IGM. Because jets are observed to have finite opening angles, one needs to quantify the role of conical versus cylindrical jet propagation in this energy transfer. Aims. We use FR-II AGN jets parameter with finite opening angles. We study the effect of the variation of the opening angle on the dynamics and energy transfer of the jet. We also point out how the characteristics of this external medium, such as its density profile, play a role in the dynamics. Methods. This study exploits our parallel AMR code MPI-AMRVAC with its special relativistic hydrodynamic model, incorporating an equation of state with varying effective polytropic index. We studied mildly under-dense jets up to opening angles of 10 degrees, at Lorentz factors of about 10, inspired by observations. Instantaneous quantification of the various ISM volumes and their energy content allows one to quantify the role of mixing versus shock-heated cocoon regions over the time intervals. Results. We show that a wider opening angle jet results in a faster deceleration of the jet and leads to a wider cocoon dominated by Kelvin-Helmholtz and Rayleigh-Taylor instabilities. The energy transfer mainly occurs in the shocked ISM region by both the frontal bow shock and cocoon-traversing shock waves, in a roughly 3 to 1 ratio to the energy transfer of the mixing zone, for a 5 degree opening angle jet. A rarefaction wave induces a dynamically formed layered structure of the jet beam. Conclusions. Finite opening angle jets can efficiently transfer significant fractions (25 % up to 70 %) of their injected energy over a growing region of shocked ISM matter. The role of the ISM stratification is prominent for determining the overall volume that is affected by relativistic jet injection

    Shape and evolution of wind-blown bubbles of massive stars: on the effect of the interstellar magnetic field

    Full text link
    The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 muG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 muG interstellar magnetic field and a 10,000 K interstellar medium and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with a warm, high-density ISM the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble. The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble.Comment: Proposed for acceptance for publication in Astronomy & Astrophysics. The published version will contain animations of each simulatio

    Synchrotron radiation of self-collimating relativistic MHD jets

    Full text link
    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate depolarization and the detectability of a lambda^2-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles which could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bi-modality in polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint to the spin direction of the central engine.Comment: Submitted to Ap

    Can the magnetic field in the Orion arm inhibit the growth of instabilities in the bow shock of Betelgeuse?

    Full text link
    Many evolved stars travel through space at supersonic velocities, which leads to the formation of bow shocks ahead of the star where the stellar wind collides with the interstellar medium (ISM). Herschel observations of the bow shock of α\alpha-Orionis show that the shock is almost free of instabilities, despite being, at least in theory, subject to both Kelvin-Helmholtz and Rayleigh-Taylor instabilities. A possible explanation for the lack of instabilities lies in the presence of an interstellar magnetic field. We wish to investigate whether the magnetic field of the interstellar medium (ISM) in the Orion arm can inhibit the growth of instabilities in the bow shock of α\alpha-Orionis. We used the code MPI-AMRVAC to make magneto-hydrodynamic simulations of a circumstellar bow shock, using the wind parameters derived for α\alpha-Orionis and interstellar magnetic field strengths of B=1.4,3.0B\,=\,1.4,\, 3.0, and 5.0μ5.0\, \muG, which fall within the boundaries of the observed magnetic field strength in the Orion arm of the Milky Way. Our results show that even a relatively weak magnetic field in the interstellar medium can suppress the growth of Rayleigh-Taylor and Kelvin-Helmholtz instabilities, which occur along the contact discontinuity between the shocked wind and the shocked ISM. The presence of even a weak magnetic field in the ISM effectively inhibits the growth of instabilities in the bow shock. This may explain the absence of such instabilities in the Herschel observations of α\alpha-Orionis.Comment: 5 pages, including 7 figures. The published version will include 4 animations. Accepted for publication in A&

    Computing the dust distribution in the bowshock of a fast moving, evolved star

    Full text link
    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology forms, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind, and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grainsize, for which we use ten representative grainsize bins. Our simulations allow to deduce how dust grains of varying sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 micro-meters) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate finestructure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer, and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grainsize, this should leave a clear imprint in infrared observations of bowshocks of red supergiants and other evolved stars.Comment: Accepted for publication in ApJL, 4 figure

    Using numerical models of bow shocks to investigate the circumstellar medium of massive stars

    Full text link
    Many massive stars travel through the interstellar medium at supersonic speeds. As a result they form bow shocks at the interface between the stellar wind. We use numerical hydrodynamics to reproduce such bow shocks numerically, creating models that can be compared to observations. In this paper we discuss the influence of two physical phenomena, interstellar magnetic fields and the presence of interstellar dust grains on the observable shape of the bow shocks of massive stars. We find that the interstellar magnetic field, though too weak to restrict the general shape of the bow shock, reduces the size of the instabilities that would otherwise be observed in the bow shock of a red supergiant. The interstellar dust grains, due to their inertia can penetrate deep into the bow shock structure of a main sequence O-supergiant, crossing over from the ISM into the stellar wind. Therefore, the dust distribution may not always reflect the morphology of the gas. This is an important consideration for infrared observations, which are dominated by dust emission. Our models clearly show, that the bow shocks of massive stars are useful diagnostic tools that can used to investigate the properties of both the stellar wind as well as the interstellar medium.Comment: 7 pages, 4 figures, to be published in the Journal of Physics: Conference Series (JPCS) as part of the proceedings of the 13th Annual International Astrophysics Conferenc

    Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    Full text link
    (Abridged) We here continue our effort to model the behaviour of matter when orbiting or accreting onto a generic black hole by developing a new numerical code employing advanced techniques geared solve the equations of in general-relativistic hydrodynamics. The new code employs a number of high-resolution shock-capturing Riemann-solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of AMR techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to compute accurately the electromagnetic emissions from such accretion flows. We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry and performed either in 2D or 3D. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black hole binary interacting with the surrounding circumbinary disc. In this way we can present, for the first time, ray-traced images of the shocked fluid and the light-curve resulting from consistent general-relativistic radiation-transport calculations from this process. The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to deal accurately and self-consistently with accretion flows onto compact objects. In addition to the accurate handling of the matter, we provide a self-consistent electromagnetic emission from these scenarios by solving the associated radiative-transfer problem. While magnetic fields are presently excluded from our analysis, the tools presented here can have a number of applications to study accretion flows onto black holes or neutron stars.Comment: 20 pages, 20 figures, accepted for publication in A&

    Pinwheels in the sky, with dust: 3D modeling of the Wolf-Rayet 98a environment

    Get PDF
    The Wolf-Rayet 98a (WR 98a) system is a prime target for interferometric surveys, since its identification as a "rotating pinwheel nebulae", where infrared images display a spiral dust lane revolving with a 1.4 year periodicity. WR 98a hosts a WC9+OB star, and the presence of dust is puzzling given the extreme luminosities of Wolf-Rayet stars. We present 3D hydrodynamic models for WR 98a, where dust creation and redistribution are self-consistently incorporated. Our grid-adaptive simulations resolve details in the wind collision region at scales below one percent of the orbital separation (~4 AU), while simulating up to 1300 AU. We cover several orbital periods under conditions where the gas component alone behaves adiabatic, or is subject to effective radiative cooling. In the adiabatic case, mixing between stellar winds is effective in a well-defined spiral pattern, where optimal conditions for dust creation are met. When radiative cooling is incorporated, the interaction gets dominated by thermal instabilities along the wind collision region, and dust concentrates in clumps and filaments in a volume-filling fashion, so WR 98a must obey close to adiabatic evolutions to demonstrate the rotating pinwheel structure. We mimic Keck, ALMA or future E-ELT observations and confront photometric long-term monitoring. We predict an asymmetry in the dust distribution between leading and trailing edge of the spiral, show that ALMA and E-ELT would be able to detect fine-structure in the spiral indicative of Kelvin-Helmholtz development, and confirm the variation in photometry due to the orientation. Historic Keck images are reproduced, but their resolution is insufficient to detect the details we predict.Comment: Accepted for publication in mnra

    3-D simulations of shells around massive stars

    Full text link
    As massive stars evolve, their winds change. This causes a series of hydrodynamical interactions in the surrounding medium. Whenever a fast wind follows a slow wind phase, the fast wind sweeps up the slow wind in a shell, which can be observed as a circumstellar nebula. One of the most striking examples of such an interaction is when a massive star changes from a red supergiant into a Wolf-Rayet star. Nebulae resulting from such a transition have been observed around many Wolf-Rayet stars and show detailed, complicated structures owing to local instabilities in the swept-up shells. Shells also form in the case of massive binary stars, where the winds of two stars collide with one another. Along the collision front gas piles up, forming a shell that rotates along with the orbital motion of the binary stars. In this case the shell follows the surface along which the ram pressure of the two colliding winds is in balance. Using the MPI-AMRVAC hydrodynamics code we have made multi-dimensional simulations of these interactions in order to model the formation and evolution of these circumstellar nebulae and explore whether full 3D simulations are necessary to obtain accurate models of such nebulae.Comment: 5 Pages, 4 figures, Proceedings of the 39th Liege Astrophysical Colloquium, held in Liege 12-16 July 201
    corecore