13 research outputs found

    Heavy metal oxide added glassy portable containers for nuclear waste management applications: In comparison with reinforced concrete containers

    Get PDF
    This study aimed to investigate the protective properties of Bi2O3 heavy metal oxide-doped glassy portable containers and the effect of reinforcement amount on these properties using the MCNPX (version 2.6.0) general-purpose Monte Carlo code. Accordingly, 60Co and 137Cs radioisotopes were defined as point isotropic radioactive sources to be transported with the newly designed containers. Four containers with different heavy metal oxide additives varying between 5% and 20% were designed and the deposited energy (MeV/g) values in the air were calculated for both 60Co and 137Cs radioisotopes. According to the findings of the first phase of the investigation, the sample (S4) with a 20% Bi2O3 additive ratio showed the highest protective properties and the least amount of deposited energy amount in the air. In the second and benchmarking phase of the investigation, we compared the amount of deposited energy in the air for the superior S4 glass container and a concrete container with a high amount of bitumen additive. The findings demonstrated that the S4 portable glass container with a 20% Bi2O3 reinforcement provided significantly lower deposited energy in the air and therefore greater nuclear safety than the concrete container. Heavy metal oxide-doped glass may be considered a viable choice for nuclear waste management and transportation operations due to its nuclear safety properties and superior physical, optical, and mechanical capabilities in comparison with concrete. © 2022 Elsevier LtdPrincess Nourah Bint Abdulrahman University, PNU, (PNURSP2022R149)Authors express their sincere gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R149), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

    Radium-223 and Actinium-225 α-Emitter Radiopharmaceuticals in Treatment of Metastatic Castration-Resistant Prostate Cancer

    No full text
    In recent decades, multiple radiopharmaceutical conjugates have been tested and shown to be efficacious in treating metastasized castration-resistant prostate cancer (mCRPC). Several types of research have been published on the therapeutic use of α-emitter radiopharmaceuticals, and several authors suggested their treatment superiority. One of the suggested methods is targeted alpha therapy. In this method, alpha radiation delivers energy to cancer cells and the tumor microenvironment while minimizing toxicity to surrounding tissues. In this chapter, the alpha emitter radiopharmaceutical applications in castration-resistant prostate cancer patients were investigated. Hence, we studied the 223Ra and 225Ac α-emitter radiopharmaceuticals application method and distribution of dose throughout human body organs

    Mechanic-elastic properties and radiation attenuation efficiency of TeO2/WO3/K2O composite glass systems for nuclear and medical application

    Get PDF
    WO3 effects on neutron and ionizing radiation defending factors of ternary tellurite-based glass blocks with molecular formula 80TeO2 –(20-x)WO3 – xK2O; x = 0–20 mol% (denoted as TKW-glass) has been reported via Phy-X theoretical calculations and Geant4 simulation code. Correlations between shielding factors and kinetics properties of the investigated glasses at different photon energy have been examined. The highest values of mass (MAC) attenuation coefficient were noted at 15 keV of the examined TKW-glass materials with the values of 38.408, 44.388, 49.855, 54.872, 59.492 cm2/g for TKW-0, TKW-5, TKW-10, TKW-15, and TKW-20, respectively. Generally, these values of the TKW-glasses obey the sequence: (TKW-0)MAC (TKW-5)HVL,MFP > (TKW-10)HVL,MFP > (TKW-15)HVL,MFP > (TKW-20)HVL,MFP. The maximum values of effective atomic number (EAN) took place at gamma energy of 15 keV corresponding to 44.35, 48.86, 52.63, 55.83, and 58.58 for TKW-0, TKW-5, TKW-10, TKW-15, and TKW-20, respectively. The trend of the buildup factors was similar for all of the glass specimens. The fast neutron removal cross-section (ΣR) enhanced as WO3 content increased in the specimens. Thus, the peaked value of ΣR is 0.1059 cm−1 was noted in the TKW-20 sample. Mechanical properties, neutron and γ-rays protection parameters were observed to improve with enhanced WO3 mol% in the TKW-glasses. The current results bear their utilization for neutron and gamma protection purposes

    Associations between exposure to brominated flame retardants with cognitive function in U.S. older adults: A cross-sectional study of NHANES from 2011 to 2012

    Get PDF
    Background: Brominated flame retardants (BFRs) are commonly used in electronic products, clothing, and furniture to reduce their flammability. They are related to reproductive system dysfunction, liver dysfunction, and fetal development disorders. However, few studies have investigated the relationship between exposure to BFRs mixtures and cognitive impairment in the general population aged 60 and above. Methods: Total 348 adults aged 60 years or older who had serum BFRs measured and four cognitive tests were enrolled in this study. Use multiple linear regression weighted models and stratified analysis to determine the causal relationship between BFRs and cognitive function in the elderly. Results: Multiple linear regression weighted models indicate a negative correlation between BFRs and cognitive function in the elderly. Result display a negative correlation between PBDE99 and animal fluency testing (β:- 1.1,95%CI:-2.0,-0.12,P = 0.032). Conclusions: Our study provides new clues to the association of BFRs with cognitive function

    Ultrasonic relaxation of TeWB glasses at low temperatures

    No full text
    The ultrasonic relaxation of tellurite glasses xB2O3 – 70 TeO2 – (30 – x) WO3, 0 ≤ x ≤ 30 mol% was investigated by measuring the ultrasonic attenuation (αL) in these glasses in the thermal range 140–300 K (T) at various frequencies (f). Some characteristics can be obtained from the relation of αL–T, such as the average activation energy (Ep) and the attempt frequency (f0). The variables Ep and f0 are a function of frequency and B2O3 content. Moreover, the relation αL–T accounts well for the oscillations of the oxygen atoms in a relaxation process. Such a physical process is originated from transmitting ultrasonic energy to the oscillating oxygen atoms in a dual-well potential. The relaxation process is inspected by a model named central force one. The subtracted different physical variables from such a model are a function of B2O3 content

    The effect of Annona muricata (Graviola) on the prevention of brain damage due to ionizing radiation in rats

    No full text
    In this study, it was aimed to evaluate the effect of ethanol extract of Annona Muricata (AM) leaves in the prevention of brain damage caused by ionizing radiation (IR). This study was conducted in the Experimental Animal Research Unit of a university with 28 adults female Wistar Albino rats. The experimental groups were as follows: Control group (n = 8), AM group (n = 6), IR group (n = 8), AM + IR group (n = 6). In the IR group, astrocyte hypertrophy, microglial reaction and inflammatory reaction levels were significantly higher than the control and AM groups (P < 0.001). Edema was significantly higher in the IR group compared to the control group (P=0.001). The MDA of the IR group was significantly higher compared to the control group and AM group (P=0.031, P=0.006, respectively). The MDA of the AM + IR group was significantly higher than the AM group (P=0.039). Our findings show that histomorphology and oxidant damage caused by IR can be ameliorated using AM, as demonstrated by the comparison of the controls to AM + IR recipients, which showed similar histomorphology and oxidant damage levels

    Bacterial MgSe complex nanoparticle synthesis and electrical characterization of fabricated Ag/MgSe/p-Si hetero-structure under dark and illumination

    No full text
    The Pseudomonas aeruginosa OG1 strain was used in the bacterial synthesis of MgSe compound nanoparticles. The obtained samples were subsequently shaped into nanocrystalline MgSe films, and their optical, structural, morphological, and electrical properties were assessed on glass and p-Si substrates. Structural and morphological characterizations showed that the fabricated thin film samples have a polycrystalline structure with high quality and uniform grain sizes. The MgSe films produced on glass substrates exhibit a direct spectral band gap of 2.53 eV, according to optical measurements. The Ag/MgSe/p-Si layered diode structure was fabricated using the produced MgSe nanoparticles and then characterized by electrical properties. Electrical measurements were carried out under these two conditions to assess the effects of dark and illumination conditions on the band dynamics of the heterostructure devices. Under illumination, the barrier height decreased while the interface density states distribution increased. These measurements showed that using bacterial-assisted grown MgSe nanocrystalline films, the developed Ag/MgSe/p-Si device structure exhibited a remarkable photoresponse and stable rectifying property. Green synthesis methods for the production of these nanocrystalline materials have the potential to offer low-cost alternatives for photosensitive applications

    Comparative analysis on application conditions of indium (III) oxide-reinforced glasses in nuclear waste management and source transportation: A Monte Carlo simulation study

    Get PDF
    This study's primary objective is to provide the preliminary findings of novel research on the design of Indium (III) oxide-reinforced glass container that were thoroughly developed for the purpose of a nuclear material container for transportation and waste management applications. The shielding characteristics of an Indium (III) oxide-reinforced glass container with a certain elemental composition against the 60Co radioisotope was thoroughly evaluated. The energy deposition in the air surrounding the designed portable glass containers is measured using MCNPX general-purpose Monte Carlo code. Simulation studies were carried out using Lenovo-P620 workstation and the number of tracks was defined as 108 in each simulation phase. According to results, the indium oxide-doped C6 (TZI8) container exhibits superior protective properties compared to other conventional container materials such as 0.5Bitumen-0.5 Cement, Pb Glass composite, Steel-Magnetite concrete. In addition to its superiority in terms of nuclear safety, it is proposed that the source's simultaneous observation and monitoring, as well as the C6 (TZI8) glass structure's transparency, be underlined as significant advantages. High-density glasses, which may replace undesirable materials such as concrete and lead, provide several advantages in terms of production ease, non-toxic properties, and resource monitoring. In conclusion, the use of Indium (III) oxide-reinforced glass with its high transparency and outstanding protection properties may be a substantial choice in places where concrete is required to ensure the safety of nuclear materials

    Tailoring optimal translocation conditions towards proximity of borotellurite glasses to the red spectrum through CeO2 for practical applications

    Get PDF
    We report the critical optical properties such as Average Visible Transmittance (AVT), colour, Color Rendering Index (CRI), and Correlated Color Temperature (CCT) of a multicomponent glass system with a nominal composition of 50TeO2–30B2O3-(20-x)Li2O-xCeO2(x=0,0.5,1,2,3,4,5,10,15,20mol%). Various advanced theoretical approaches as well as calculations are utilized in terms of determining the optical properties of studied glasses. The maximum transmittance and AVT values of the glass system exceeded 80% and 79.59%, respectively. The colour coordinates are found extremely near to D65 and the achromatic point without CeO2contribution. According to our results, the current system has a promising ability to be utilized for coloured window applications in terms of both AVT and colour with 2% CeO2doping. Our results showed that, the CeO2additive is able to move the glass colour straight into the red spectrum by shifting the transmittance spectrum to the long-wavelength portion of the visible spectrum. With 10% CeO2doping, opacity in the visible area and permeability in the NIR region are obtained, and the CCT value changes from 5002K to 2560K. It can be concluded that a filter system with modifiable NIR or red optical characteristics may be produced through the CeO2alterations in borotellurite glass systems

    Delving into the properties of nanostructured Mg ferrite and PEG composites: A comparative study on structure, electrical conductivity, and dielectric relaxation

    Get PDF
    Magnesium ferrite (MgFe2O4) and polyethylene glycol (PEG) are materials known for their versatility in various applications. This study presents a comprehensive comparative analysis of the electrical conductivity and dielectric relaxation of nanostructured MgFe2O4 and its composites with PEG. Through experimentation, it was observed that incorporating PEG into MgFe2O4 did not lead to a high relative observed decrease or increase in electrical conductivity at room temperature. The study revealed that the composites maintained stable electrical behavior at room temperature, with a dielectric constant value of around 9 and a loss tangent value of around 0.1 at high frequency (around 7 MHz). The electron-hole hopping mechanism was identified as the underlying cause for the strong dielectric dispersion with frequency. The low dielectric loss and conductivity of the MgFe2O4 and PEG/ferrite composites make them promising candidates for high-frequency switching applications and microelectronic devices, particularly in scenarios where negligible eddy currents are essential. Additionally, complex impedance data analysis demonstrated that the capacitive and resistive properties of the composites are primarily attributed to grain boundary processes. This study provides a comprehensive analysis of the electrical and dielectric properties of MgFe2O4 and PEG composites and highlights their potential for many applications in materials science, particularly in electrical and electronic devices
    corecore