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Abstract 

This study aimed to investigate the protective properties of Bi2O3 heavy metal oxide-doped glassy portable 

containers and the effect of reinforcement amount on these properties using the MCNPX (version 2.6.0) 

general-purpose Monte Carlo code. Accordingly, 60Co and 137Cs radioisotopes were defined as point 

isotropic radioactive sources to be transported with the newly designed containers. Four containers with 

different heavy metal oxide additives varying between 5% and 20% were designed and the deposited energy 

(MeV/g) values in the air were calculated for both 60Co and 137Cs radioisotopes. According to the findings 

of the first phase of the investigation, the sample (S4) with a 20% Bi2O3 additive ratio showed the highest 

protective properties and the least amount of deposited energy amount in the air. In the second and 

benchmarking phase of the investigation, we compared the amount of deposited energy in the air for the 

superior S4 glass container and a concrete container with a high amount of bitumen additive. The findings 

demonstrated that the S4 portable glass container with a 20% Bi2O3 reinforcement provided significantly 

lower deposited energy in the air and therefore greater nuclear safety than the concrete container. Heavy 

metal oxide-doped glass may be considered a viable choice for nuclear waste management and 

transportation operations due to its nuclear safety properties and superior physical, optical, and 

mechanical capabilities in comparison with concrete. 
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1. Introduction 

Numerous facilities, buildings, and containers for the extended storage of nuclear waste substances 

are designed and developed using concrete(Ghouleh and Shao, 2018; Kurniawan et al., 2022). 

Reinforced concrete serves a variety of functions, including structural support, confinement, and 

environmental protection. Concrete is used for a wide variety of construction purposes, from 

surface structures to shallow subsurface vaults and deep subterranean repositories. Concrete 

structures in these facilities must meet additional requirements than those in conventional civil 

engineering applications, as decreased functionality or degradation of the material can be caused 

by both the contents (e.g., intense heat, exposure to radiation, and radionuclides from waste types) 

and external influences (e.g., chemical and physical attack), with embedded steel corrosion, 

leaching, increased temperature and irradiation being some of the primary risks (Gu et al., 2011; 

Han et al., 2020; Turick and Berry, 2016; Vupputuri et al., 2015). Additionally, depending on the 

application, the anticipated service life of these structures may vary from tens to hundreds or even 

thousands of years. During this time, reinforced concrete is required to act as a physical and 

chemical barrier between the waste and the surrounding environment (Arfa et al., 2022; 

International Atomic Energy Agency., 2005; Wisnubroto et al., 2021). Leaching and cracking will 

become more important in the long run, since water will serve as a transport medium for 

radionuclides if the other constructed barriers fail. Almost all chemical and physical processes that 

affect the durability of concrete buildings are influenced by transport mechanisms inside pores and 

fractures, as well as the presence of a fluid. The impermeability of concrete is consequently critical 

for the long-term durability of radioactive waste facilities. The permeability varies depending on 

the component quantities, degree of cement hydration, cement fineness, aggregate grade, and 
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moisture level. Management of the factors which lead to an increase in the permeability or cracking 

of concrete is therefore critical for the long-term viability of radioactive waste management 

systems. Due to the risks associated with nuclear waste and comparable products during 

transportation and storage, researchers have developed a variety of materials which are more 

resistant to degradation. In recent years, researchers have prioritized the examination of heavy 

metal oxide-added glass composites and other types of glass as potential containers for the 

transportation of radioactive sources and other nuclear safety applications (Ojovan and Lee, 2011; 

Zakaly et al., 2021). Existing studies have determined and compared the radiation shielding 

properties of various types of glass materials with different kinds of heavy metal oxide (HMO) 

reinforcement across broad gamma energy ranges(ALMisned et al., 2021; Javaherdashti, 2009; 

Kassab et al., 2022; Kim and Yi, 2017; Kurudirek, 2017; Mostafa et al., 2020; Othman et al., 2019; 

Zakaly et al., 2022). While investigating the shielding properties of individual materials is critical 

for nuclear radiation applications, the design of these materials for practical applications and the 

subsequent situation in terms of environmental radiation and worker radiation safety should be 

investigated through experimental or advanced simulation methods. The purpose of this work was 

to construct various Bi2O3 heavy metal oxide doped glass materials(Abouhaswa et al., 2021a, 

2021b; Rammah et al., 2021; H O Tekin et al., 2022; Huseyin Ozan Tekin et al., 2022) as nuclear 

containers and to explore the impact of increasing the quantity of heavy metal oxide on the amount 

of energy deposited in the air. The nuclear safety properties of the newly designed Bi2O3 reinforced 

glass container against Cobalt (60Co) and Cesium (137Cs) radioisotopes were investigated and 

compared to the reinforced concrete container (Reda and Saleh, 2021) using general-purpose 

MCNPX (version 2.6.0) (computer code Collection, 2002) Monte Carlo code. Also, By Using the 

MCNPX (version 2.6.0), the purpose of this study was to investigate the protective properties of 
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Bi2O3 heavy metal oxide-doped glassy portable containers and the effect of reinforcement amount 

on these properties. Specifically, the study wanted to look at how the amount of reinforcement 

affected these properties. In light of this, the radioisotopes 60Co and 137Cs were categorised as 

point isotropic radioactive sources, and they were designated to be carried using the newly 

constructed containers. The deposited energy values (MeV/g) in the air were determined for both 

60Co and 137Cs radioisotopes, and four distinct containers were created with different heavy 

metal oxide additions ranging from 5 percent to 20 percent. The results obtained from the current 

investigation may provide significant scientific data to provide direction for the development and 

design of alternative containers for nuclear waste management. 

2. Materials and Methods 

In this study, four different portable heavy metal oxide reinforced glass (Barebita et al., 2020) 

containers were modeled using the MCNPX Monte Carlo code. Elemental compositions and 

material densities of the modeled containers are given in Table 1. In the composition variation 

from the S1 sample to the S4 sample, the most dominant change occurred in the Bi2O3 heavy 

metal oxide contribution from 5% to 20%. As a consequence of this net change of 15%, glass 

densities rose directly, with the density of the S1 sample increasing from 3.1589 g/cm3 to 4.0108 

g/cm3 in the S4 sample. All simulations were performed using Lenovo® ThinkStation-

P620/30E0008QUS Workstation-1x AMD-Ryzen, Threadripper PRO Hexadeca-core (16Core) 

3955WX 3.90GHz-32 GB DDR4 SDRAM RAM.  

2.1 Design of portable glass container in MCNPX code 

Preparing the INPUT file in line with the code hierarchy should be regarded as the fundamental 

stage for studies using MCNPX code. In the MCNPX INPUT file, there are three main definition 
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sections, namely CELL, SURFACE, and DATA cards. First, the boundaries of cellular structures 

concerning geometric surfaces are outlined in this study. Figure 1 depicts the model's portable 

glass container in two dimensions. As demonstrated, a point isotropic source geometry is placed 

on the central point of the simulation world (i.e., 0,0,0). A new cellular structure for the portable 

glass containers was created using the chemical compositions of the S1, S2, S3, and S4 glass, given 

in Table 1.  Finally, in the input file, an air cell was defined that surrounded the glass 

container.  Since the primary goal of this investigation was to measure the total energy deposited 

in the air, the air cell has been covered by an outer attenuator material. This was accomplished by 

accumulating the energy released into the air via radioactive decay of administrated 60Co and 137Cs 

radioisotopes housed inside the container, and then simulating the emission of that energy into 

four different containers. 

2.2 Measurements of deposited energy amounts  

INPUT files were prepared with two different radioisotopes for four different containers, therefore, 

a total of eight different INPUT files were created. Afterwards, these created INPUT files were 

run one by one for 108 particle numbers and the output files were saved, respectively. Figure 2 

shows the MCNPX visual editor's three-dimensional rendering of the modeled portable glass 

container. The radioisotope is fully incorporated into the cylindrical container, and its top and 

bottom sections are covered. F6 TALLY MESH, a key output recording component of the MCNP 

code, is used in this study. Using F6 TALLY MESH, one can obtain total energy deposition in a 

cell as MeV/g or jerks/g. Three F6 TALLY MESH definitions were inserted into three distinct cell 

volumes in this research. Cells 10, 11, and 12 shown in Figure 1 and the air surrounding the 

portable glass container, shown in Figure 2, are the three separate cellular volumes. Each time a 

simulation cycle is completed, the energy deposition amounts in these three cells are extracted 
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from the output file and summed. Thus, the sum of the energy deposition in the three cellular 

volumes of air surrounding the container was provided for each simulation cycle. As a standard 

definition in the eight different INPUT files, the F6 TALLIES were defined as below. 

-F6:P 10 

-F16:P 11 

-F26:P 12 

Each row represents a single F6 TALLY MESH, which has been constructed to record solely the 

energy deposits induced by photons (i.e., P) in cells 10, 11, and 12.  

3. Results and Discussions 

     In this study, four portable glass containers with different elemental compositions were 

designed and their nuclear radiation protection potentials were comprehensively investigated. Two 

separate radioisotopes were used for each container to calculate the energy deposition in the air 

around the designed portable glass containers. To begin, the 60Co radioisotope was placed into the 

designed glass containers, and the deposited energy (MeV/g) into the surrounding air cell was 

measured for each of the four containers. Figure 3 shows the variation of energy deposition amount 

in the air as a function of increasing Bi2O3 contribution in the glass samples for the 60Co 

radioisotope. As demonstrated, the quantity of energy deposited in the air has changed in inverse 

proportion to the increasing amount of Bi2O3 in the elemental composition of the glass. This is 

supported by findings in the literature, where it has been reported that increasing quantities of 

Bi2O3 in glass materials improves their gamma-ray attenuation capabilities(Kurtulus et al., 2021; 

Lakshminarayana et al., 2021b, 2021a; Mahmoud et al., 2021). In this simulation, increasing these 

shielding properties in the positive direction had a direct effect on the amount of energy deposited 

in the air surrounding the container, with the S4 container (20% Bi2O3) demonstrating minimum 
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energy deposition in the air for the 60Co radioisotope (See Table 2). 137Cs was used as the isotropic 

point radiation source in the next phase of the simulation, again, placed inside the designed 

containers S1, S2, S3 and S4 (see Figure 2). As before, the gamma-ray energy released by the point 

source and its influence on the surrounding air cell was computed for four samples. Figure 4 

depicts the variation of energy deposition amount in the air as a function of increasing Bi2O3 

contribution in the glass samples for 137Cs radioisotope. A similar trend in the decrement was 

reported also for 137Cs radioisotope. Despite the fact that the four glass samples were equal in terms 

of their elemental compositions, the quantity of energy deposited in the air significantly varied for 

both radioisotopes. This is illustrated in Figure 5, comparing the amounts of energy emitted 

through four different containers and deposited in surrounding air for both 60Co and 137Cs 

radioisotopes. It is clear to see that the overall quantity of energy deposited in the air varies for the 

two radioisotopes. This is explained by the gamma-ray energy specific to each radioisotope - the 

60Co radioisotope emits gamma rays with energies of 1.17 MeV and 1.33 MeV, while the 137Cs 

radioisotope emits gamma rays with energies of 0.662 MeV (Lee et al., 2021; Murphy and Kamen, 

2019; Zakaly et al., 2019). Meanwhile, color mapping was performed on the total amount of energy 

deposited in the air by 60Co and 137Cs radioisotopes, and the energy change trend on the scale from 

S1 to S4 is displayed in Figure 5. Figure 5 demonstrates that the maximum amount of energy 

deposited in the air decreases as the quantity of Bi2O3 in the material increases, i.e. for columns S1 

to S4 (i.e., from left to right), while the minimum amount of energy deposited in the air increases. 

This situation demonstrates the direct influence of the elemental composition on the amount of 

energy deposited in the air, ranging from S1 to S4. As a result, one may say that the maximum 

quantity of blue zone for the S4 sample, which gives the greatest level of radiation protection, 

provides the maximum level of protection for this type of portable glass container. In the final 

Jo
urn

al 
Pre-

pro
of



phase of this study, the obtained results were compared for another container structure and the 

results were presented in Figure 7 and Figure 8 as a function of the amount of deposited energy 

(MeV/g) in the air. In a previous study, Reda and Saleh (Reda and Saleh, 2021) investigated the 

gamma radiation shielding efficiency of the cement-bitumen portable container using 60Co and 

137Cs radioisotopes. Their findings indicated that a Cement 50% + Bitumen 50% mixture of cement 

and bitumen provided the highest shielding effectiveness. They have, however, explored the 

attenuation coefficients of the container models. We created the Cement 50% + Bitumen 50% 

mixture as a container under the same conditions as the newly designed glass containers presented 

in this investigation. As a result, we repeated the analyses for measuring the deposited energy in 

the air for 60Co and 137Cs radioisotopes in order to provide a comparison phase between the S4 

sample and the Cement 50% + Bitumen 50% sample. Our results showed that the S4 sample has 

better protection efficiency than Cement 50% + Bitumen 50% container for both the 60Co and 137Cs 

radioisotopes (Figures 7 and 8).  

4. Conclusion 

The widespread application of nuclear technology in a variety of fields, from industry to health, 

has kept a broad range of technological investments in this field, from devices used in this field to 

protective equipment, in a state of continuous development and resulted in the establishment of its 

own research and development branches. Transportation, storage, and preservation of nuclear 

materials are some of these fields of study. While protection features are critical for the long-term 

preservation of nuclear waste, improving existing protection features through the implementation 

of innovative approaches in this area is critical in terms of both environmental and sustainable 

costs. In recent years, glass materials have emerged as the leading model for radiation shielding 

applications due to their desirable physical and structural attributes, and they continue to do so. 
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The primary objective of this research was to contribute some practical results to the literature by 

expanding the possibility of employing glass materials in nuclear applications. This simulation 

found that the addition of Bi2O3 heavy metal oxide may be employed effectively to enhance the 

gamma-ray shielding characteristics of glass samples. This has the consequence of significantly 

reducing the quantity of deposited energy in the air, which is the primary topic of this research. 

Reducing the amount of energy deposited in the air to minimal levels is imperative for public 

health and environmental health issues. The comparison phase of this study provides evidence of 

the superiority of the heavy metal oxide-added, high-density glass (S4) over a 50% concrete + 50% 

bitumen container.  This may provide motivation for the further development of the glass 

composition presented here as the S4 sample. Glass is highly durable, mostly transparent, simple 

to produce, non-toxic, and flexible in its use. This condition may serve as a powerful incentive for 

the scientific community to continue developing current features. Further work may be carried out 

to investigate the mechanical and thermal characteristics of the material suggested here.  
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1 
 

Table 1: Samples code, elemental weight fraction, density, and molar volume of (0.25-x) Bi2O3 -xB2O3 -

0.75 (50%P2O5 -50%V2O5):x=0.05, 0.10, 0.15, and 0.20 glasses. 

  

   Code 

Elemental weight fraction (wt.%) Density 

(g/cm3) 

[31] 

Molar volume 

(cm3/mol) [31] B O P V Bi 

Sample 1 0.027254 0.453788 0.146422 0.240816 0.13172 3.1589 50.2263 

Sample 2 0.018171 0.403401 0.130164 0.214076 0.234189 3.5016 50.9738 

Sample 3 0.010903 0.363085 0.117155 0.192681 0.316176 3.6909 53.7240 

Sample 4 0.004956 0.330095 0.10651 0.175174 0.383264 4.0108 54.3781 

 

Table 2: Total energy depositions (MeV/g) in the air for 60Co and 137Cs isotopes 

  60Co 137Cs 

Sample 1 0.00010055 0.00005738 

Sample 2 0.00009977 0.00005591 

Sample 3 0.00009926 0.00005493 

Sample 4 0.00009889 0.00005419 
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Figure 1: 2-D view of modelled glassy nuclear container (obtained from MCNPX Visual Editor) 

 

Figure 2: 3-D view of modelled glassy nuclear container (obtained from MCNPX Visual Editor) 
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Figure 3: Variation of energy deposition in the air emitted from 60Co isotope as a function of increasing 

Bi2O3 reinforcement in the container structure 

 

Figure 4: Variation of energy deposition in the air emitted from 137Cs isotope as a function of increasing 

Bi2O3 reinforcement in the container structure 
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Figure 5: Comaprison of energy deposition in the air for 60Co and 137Cs isotopes 

 

 

Figure 6: Distribution of energy in the air for designed glassy nuclear containers  
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Figure 7: Comparison of energy deposition in the air emitted from 60Co isotope  

 

Figure 8: Comparison of energy deposition in the air emitted from 137Cs isotope 
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Highlights 

 

• Heavy metal oxide-doped glassy portable containers were designed 

• MCNPX (version 2.6.0) general purpose Monte Carlo code was used 

• 60Co and 137Cs radioisotopes were used as point isotropic sources 

• Deposited energy (MeV/g) amount has been measured 

• S4 container with a 20% Bi2O3 reinforcement provided significantly lower deposited energy in 

the air 
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