169 research outputs found

    Cooling of Molecular Ion Beams

    No full text
    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal exciation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

    Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    Full text link
    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10 cm x 10 cm) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, as well as breakup geometries, as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the TSR storage ring facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A huge isotope effect is observed when comparing the relative branching ratio between the D2+H and the HD+D channel; the ratio 2B(D2+H)/B(HD+D), which is measured to be 1.27 +/- 0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7 +/- 0.5 at ~5 eV.Comment: 11 pages, 12 figures, submitted to Physical Review

    A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism

    Get PDF
    We present a two particle model to explain the mechanism that stabilizes a bunch of positively charged ions in an "ion trap resonator" [Pedersen etal, Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two ions into two mappings for the free motion in different parts of the trap and one for a compressing momentum kick. The ions' interaction is modelled by a time delay, which then changes the balance between adjacent momentum kicks. Through these mappings we identify the microscopic process that is responsible for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev

    Anisotropic fragmentation in low-energy dissociative recombination

    Full text link
    On a dense energy grid reaching up to 75 meV electron collision energy the fragmentation angle and the kinetic energy release of neutral dissociative recombination fragments have been studied in a twin merged beam experiment. The anisotropy described by Legendre polynomials and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged rate coefficient. For the first time angular dependences higher than 2nd^{nd} order could be deduced. Moreover, a slight anisotropy at zero collision energy was observed which is caused by the flattened velocity distribution of the electron beam.Comment: 8 pages, 4 figures; The Article will be published in the proceedings of DR 2007, a symposium on Dissociative Recombination held in Ameland, The Netherlands (18.-23. July 2008); Reference 19 has been published meanwhile in S. Novotny, PRL 100, 193201 (2008

    Coulomb-explosion imaging of CH2+: target-polarization effects and bond-angle distribution

    Get PDF
    The effect of target polarization fields on the bond-angle distribution following the foil-induced Coulomb explosion of CH2+ has been measured. Incorporating a detailed model description of the polarization effects and other target effects into a Monte Carlo simulation of the experiment, a good description of the various observables is obtained. In particular, the bond-angle distribution is found to agree with existing ab initio calculations.This work has been supported in part by the German-Israel Foundation for Scientific Research (GIF) under Contract No. I-707-55.7/2001, the Spanish Ministerio de Ciencia y Tecnología (Project Nos. BFM2003-04457-C02-01/02 and HA2001-0052), the DAAD in the framework of the Acciones Integrados Program 2002/03, and the European Community within the Research Training Network “Electron Transfer Reactions.” One of the authors (S.H.A.) thanks the Fundación Cajamurcia for a Postdoctoral Grant

    Quantum Control of Photodissociation via Manipulation of Bond Softening

    Full text link
    We present a method to control photodissociation by manipulating the bond softening mechanism occurring in strong shaped laser fields, by varying the chirp sign and magnitude of an ultra-short laser pulse. Manipulation of bond-softening is experimentally demonstrated for strong field (795 nm, 10^12 - 10^13 W/cm^2) photodissociation of H2+, exhibiting substantial increase of dissociation by positively chirped pulses with respect to both negatively chirped and transform limited pulses. The measured kinetic energy release and angular distributions are used to quantify the degree of control of dissociation. The control mechanism is attributed to the interplay of dynamic alignment and chirped light induced potential curves.Comment: 4 pages, 4 figure

    Fragmentation of CD+ induced by intense ultrashort laser pulses

    Get PDF
    Citation: Graham, L., Zohrabi, M., Gaire, B., Ablikim, U., Jochim, B., Berry, B., . . . Ben-Itzhak, I. (2015). Fragmentation of CD+ induced by intense ultrashort laser pulses. Physical Review A, 91(2), 11. doi:10.1103/PhysRevA.91.023414The fragmentation of CD[superscript +] in intense ultrashort laser pulses was investigated using a coincidence three-dimensional momentum imaging technique improved by employing both transverse and longitudinal electric fields. This allowed clear separation of all fragmentation channels and the determination of the kinetic energy release down to nearly zero, for a molecule with significant mass asymmetry. The most probable dissociation pathways for the two lowest dissociation limits, C[superscript +]+D and C+D[superscript +], were identified for both 22-fs, 798-nm and 50-fs, 392-nm pulses. Curiously, the charge asymmetric dissociation of CD[superscript 2+] was not observed for 392-nm photons, even though it was clearly visible for the fundamental 798 nm at the same peak intensity

    Semi-Classical Description of Antiproton Capture on Atomic Helium

    Full text link
    A semi-classical, many-body atomic model incorporating a momentum-dependent Heisenberg core to stabilize atomic electrons is used to study antiproton capture on Helium. Details of the antiproton collisions leading to eventual capture are presented, including the energy and angular momentum states of incident antiprotons which result in capture via single or double electron ionization, i.e. into [He++pˉ^{++}\,\bar p or He+pˉ^{+}\,\bar p], and the distribution of energy and angular momentum states following the Auger cascade. These final states are discussed in light of recently reported, anomalously long-lived antiproton states observed in liquid He.Comment: 15 pages, 9 figures may be obtained from authors, Revte
    corecore