478 research outputs found

    Polarization mode dispersion in radio-frequency interferometric embedded fiber-optic sensors

    Get PDF
    The effect of fiber birefringence on the propagation delay in an embedded fiber-optic strain sensor is studied. The polarization characteristics of the sensor are described in terms of polarization mode dispersion through the principal states of polarization and their differential group delay. Using these descriptors, an analytical expression for the response of the sensor for an arbitrary input state of polarization is given and experimentally verified. It is found that the differential group delay, as well as the input and output principal states of polarization, vary when the embedded fiber is strained, leading to fluctuations in the sensor output. The use of high birefringence fibers and different embedding geometries is examined as a means for reducing the polarization dependency of the sensor

    PMP22 exon 4 deletion causes ER retention of PMP22 and a gain-of-function allele in CMT1E

    Get PDF
    OBJECTIVE: To determine whether predicted fork stalling and template switching (FoSTeS) during mitosis deletes exon 4 in peripheral myelin protein 22 KD (PMP22) and causes gain‐of‐function mutation associated with peripheral neuropathy in a family with Charcot–Marie–Tooth disease type 1E. METHODS: Two siblings previously reported to have genomic rearrangements predicted to involve exon 4 of PMP22 were evaluated clinically and by electrophysiology. Skin biopsies from the proband were studied by RT‐PCR to determine the effects of the exon 4 rearrangements on exon 4 mRNA expression in myelinating Schwann cells. Transient transfection studies with wild‐type and mutant PMP22 were performed in Cos7 and RT4 cells to determine the fate of the resultant mutant protein. RESULTS: Both affected siblings had a sensorimotor dysmyelinating neuropathy with severely slow nerve conduction velocities (<10 m/sec). RT‐PCR studies of Schwann cell RNA from one of the siblings demonstrated a complete in‐frame deletion of PMP22 exon 4 (PMP22Δ4). Transfection studies demonstrated that PMP22Δ4 protein is retained within the endoplasmic reticulum and not transported to the plasma membrane. CONCLUSIONS: Our results confirm that that FoSTeS‐mediated genomic rearrangement produced a deletion of exon 4 of PMP22, resulting in expression of both PMP22 mRNA and protein lacking this sequence. In addition, we provide experimental evidence for endoplasmic reticulum retention of the mutant protein suggesting a gain‐of‐function mutational mechanism consistent with the observed CMT1E in this family. PMP22Δ4 is another example of a mutated myelin protein that is misfolded and contributes to the pathogenesis of the neuropathy

    Weighted Dirac combs with pure point diffraction

    Full text link
    A class of translation bounded complex measures, which have the form of weighted Dirac combs, on locally compact Abelian groups is investigated. Given such a Dirac comb, we are interested in its diffraction spectrum which emerges as the Fourier transform of the autocorrelation measure. We present a sufficient set of conditions to ensure that the diffraction measure is a pure point measure. Simultaneously, we establish a natural link to the theory of the cut and project formalism and to the theory of almost periodic measures. Our conditions are general enough to cover the known theory of model sets, but also to include examples such as the visible lattice points.Comment: 44 pages; several corrections and improvement

    Steroid Hormone Signaling Is Essential to Regulate Innate Immune Cells and Fight Bacterial Infection in Drosophila

    Get PDF
    Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in Drosophila, and paves the way for genetic dissection of the mechanisms at work behind steroid regulation of innate immune cells.FCT fellowships: (SFRH/BPD/44613/2008, SFRH/BD/51175/2010), EMBO: (ALTF 178-2009), Gulbenkian Institute PhD Program

    Pure point diffraction and cut and project schemes for measures: The smooth case

    Full text link
    We present cut and project formalism based on measures and continuous weight functions of sufficiently fast decay. The emerging measures are strongly almost periodic. The corresponding dynamical systems are compact groups and homomorphic images of the underlying torus. In particular, they are strictly ergodic with pure point spectrum and continuous eigenfunctions. Their diffraction can be calculated explicitly. Our results cover and extend corresponding earlier results on dense Dirac combs and continuous weight functions with compact support. They also mark a clear difference in terms of factor maps between the case of continuous and non-continuous weight functions.Comment: 30 page

    A new perturbative expansion of the time evolution operator associated with a quantum system

    Full text link
    A novel expansion of the evolution operator associated with a -- in general, time-dependent -- perturbed quantum Hamiltonian is presented. It is shown that it has a wide range of possible realizations that can be fitted according to computational convenience or to satisfy specific requirements. As a remarkable example, the quantum Hamiltonian describing a laser-driven trapped ion is studied in detail.Comment: 32 pages; modified version with examples of my previous paper quant-ph/0404056; to appear on the J. of Optics B: Quantum and Semiclassical Optics, Special Issue on 'Optics and Squeeze Transformations after Einstein

    Measuring Test Case Similarity to Support Test Suite Understanding

    Full text link

    How and Why Does a Fly Turn Its Immune System Off?

    Get PDF
    The fly immune response is actively turned down, and if it is not, pathology results

    Polarization mode dispersion in radio-frequency interferometric embedded fiber-optic sensors

    Full text link
    • 

    corecore