30 research outputs found

    A generalized differential transform method for linear partial differential equations of fractional order

    Get PDF
    In this letter we develop a new generalization of the two-dimensional differential transform method that will extend the application of the method to linear partial differential equations with space- and time-fractional derivatives. The new generalization is based on the two-dimensional differential transform method, generalized Taylor’s formula and Caputo fractional derivative. Several illustrative examples are given to demonstrate the effectiveness of the present method. The results reveal that the technique introduced here is very effective and convenient for solving linear partial differential equations of fractional order

    A multi-step differential transform method and application to non-chaotic or chaotic systems

    Get PDF
    International audienceThe differential transform method (DTM) is an analytical and numerical method for solving a wide variety of differential equations and usually gets the solution in a series form. In this paper, we propose a reliable new algorithm of DTM, namely multi-step DTM, which will increase the interval of convergence for the series solution. The multi-step DTM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions for systems of differential equations. This new algorithm is applied to Lotka-Volterra, Chen and Lorenz systems. Then, a comparative study between the new algorithm, multi- step DTM, classical DTM and the classical Runge-Kutta method is presented. The results demonstrate reliability and efficiency of the algorithm developed

    Numerical methods for nonlinear partial differential equations of fractional order

    Get PDF
    In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order

    Adaptive feedback control and synchronization of non-identical chaotic fractional order systems

    No full text
    International audienceThis paper addresses the reliable synchronization problem between two non-identical chaotic fractional order systems. In this work, we present an adaptive feedback control scheme for the synchronization of two coupled chaotic fractional order systems with different fractional orders. Based on the stability results of linear fractional order systems and Laplace transform theory, using the master-slave synchronization scheme, sufficient conditions for chaos synchronization are derived. The designed controller ensures that fractional order chaotic oscillators that have non-identical fractional orders can be synchronized with suitable feedback controller applied to the response system. Numerical simulations are performed to assess the performance of the proposed adaptive controller in synchronizing chaotic systems

    Homotopy perturbation method for nonlinear partial differential equations of fractional order

    No full text
    The aim of this Letter is to present an efficient and reliable treatment of the homotopy perturbation method (HPM) for nonlinear partial differential equations with fractional time derivative. The fractional derivative is described in the Caputo sense. The modified algorithm provides approximate solutions in the form of convergent series with easily computable components. The obtained results are in good agreement with the existing ones in open literature and it is shown that the technique introduced here is robust, efficient and easy to implemen

    On a New Modification of the Erdélyi–Kober Fractional Derivative

    No full text
    In this paper, we introduce a new Caputo-type modification of the Erdélyi–Kober fractional derivative. We pay attention to how to formulate representations of Erdélyi–Kober fractional integral and derivatives operators. Then, some properties of the new modification and relationships with other Erdélyi–Kober fractional derivatives are derived. In addition, a numerical method is presented to deal with fractional differential equations involving the proposed Caputo-type Erdélyi–Kober fractional derivative. We hope the presented method will be widely applied to simulate such fractional models

    Application of homotopy perturbation method for ecosystems modelling

    No full text
    International audienc

    Applications of variational iteration and homotopy perturbation methods to fractional evolution equations

    No full text
    In this paper, variational iteration and homotopy perturbation methods that developed for integer-order differential equations are directly extended to derive explicit and numerical solutions of various evolution equations with time-fractional derivatives. The results reveal that the two methods are very effective and convenient for solving nonlinear partial differential equations of fractional order
    corecore