7 research outputs found

    Enlarging the synthetic biology toolbox for Pichia pastoris: Golden Gate cloning and CRISPR/Cas9

    Get PDF
    State-of-the-art strain engineering techniques for the protein producing yeast host Pichia pastoris include overexpression of homologous and heterologous genes, and deletion of host genes. For this purpose overexpression vectors and gene deletion methods such as the split marker technique have been established. For metabolic and cell engineering purposes, the simultaneous overexpression of more than one gene is often needed. Previous approaches employing subsequent steps of overexpression and marker recycling were time- and labor-consuming. Therefore, efficient systems allowing multiple gene overexpression are required, that can be stably integrated into the P. pastoris genome. To this end, we developed a synthetic biology toolbox based on Golden Gate cloning to enable efficient construction of complex and versatile over-expression vectors. Up to five different expression cassettes, employing a library of promoters and terminators can be combined into one vector, and successfully integrated into the genomic DNA of P. pastoris at targeted loci in one step. Recent trends in synthetic biology, however, go into the direction of building up large and complex reaction networks. To allow for clean and unscarred genetic engineering, a CRISPR/Cas9 based method for gene insertions, deletions and replacements was developed, which paves the way for precise genomic rearrangements in P. pastoris. By using this technique precise genomic integrations were performed efficiently without integrative selection markers. The repertoire of genetic techniques developed so far, will provide a wide variety of possibilities to engineer P. pastoris. Applications for these synthetic biology tools in cell engineering of recombinant P. pastoris will be presented

    Golden Pi CS : a golden gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris

    Get PDF
    This work has been supported by the Federal Ministry of Science, Research and Economy (BMWFW), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol, the Government of Lower Austria and ZIT - Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG.State-of-the-art strain engineering techniques for the host Pichia pastoris (syn. Komagataella spp.) include overexpression of homologous and heterologous genes, and deletion of host genes. For metabolic and cell engineering purposes the simultaneous overexpression of more than one gene would often be required. Very recently, Golden Gate based libraries were adapted to optimize single expression cassettes for recombinant proteins in P. pastoris. However, an efficient toolbox allowing the overexpression of multiple genes at once was not available for P. pastoris. With the Golden Pi CS system, we provide a flexible modular system for advanced strain engineering in P. pastoris based on Golden Gate cloning. For this purpose, we established a wide variety of standardized genetic parts (20 promoters of different strength, 10 transcription terminators, 4 genome integration loci, 4 resistance marker cassettes). All genetic parts were characterized based on their expression strength measured by eGFP as reporter in up to four production-relevant conditions. The promoters, which are either constitutive or regulatable, cover a broad range of expression strengths in their active conditions (2-192% of the glyceraldehyde-3-phosphate dehydrogenase promoter P ), while all transcription terminators and genome integration loci led to equally high expression strength. These modular genetic parts can be readily combined in versatile order, as exemplified for the simultaneous expression of Cas9 and one or more guide-RNA expression units. Importantly, for constructing multigene constructs (vectors with more than two expression units) it is not only essential to balance the expression of the individual genes, but also to avoid repetitive homologous sequences which were otherwise shown to trigger "loop-out" of vector DNA from the P. pastoris genome. Golden Pi CS, a modular Golden Gate-derived P. pastoris cloning system, is very flexible and efficient and can be used for strain engineering of P. pastoris to accomplish pathway expression, protein production or other applications where the integration of various DNA products is required. It allows for the assembly of up to eight expression units on one plasmid with the ability to use different characterized promoters and terminators for each expression unit. Golden Pi CS vectors are available at Addgene. The online version of this article (10.1186/s12918-017-0492-3) contains supplementary material, which is available to authorized users

    Golden Pi CS : a golden gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris

    No full text
    This work has been supported by the Federal Ministry of Science, Research and Economy (BMWFW), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol, the Government of Lower Austria and ZIT - Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG.State-of-the-art strain engineering techniques for the host Pichia pastoris (syn. Komagataella spp.) include overexpression of homologous and heterologous genes, and deletion of host genes. For metabolic and cell engineering purposes the simultaneous overexpression of more than one gene would often be required. Very recently, Golden Gate based libraries were adapted to optimize single expression cassettes for recombinant proteins in P. pastoris. However, an efficient toolbox allowing the overexpression of multiple genes at once was not available for P. pastoris. With the Golden Pi CS system, we provide a flexible modular system for advanced strain engineering in P. pastoris based on Golden Gate cloning. For this purpose, we established a wide variety of standardized genetic parts (20 promoters of different strength, 10 transcription terminators, 4 genome integration loci, 4 resistance marker cassettes). All genetic parts were characterized based on their expression strength measured by eGFP as reporter in up to four production-relevant conditions. The promoters, which are either constitutive or regulatable, cover a broad range of expression strengths in their active conditions (2-192% of the glyceraldehyde-3-phosphate dehydrogenase promoter P ), while all transcription terminators and genome integration loci led to equally high expression strength. These modular genetic parts can be readily combined in versatile order, as exemplified for the simultaneous expression of Cas9 and one or more guide-RNA expression units. Importantly, for constructing multigene constructs (vectors with more than two expression units) it is not only essential to balance the expression of the individual genes, but also to avoid repetitive homologous sequences which were otherwise shown to trigger "loop-out" of vector DNA from the P. pastoris genome. Golden Pi CS, a modular Golden Gate-derived P. pastoris cloning system, is very flexible and efficient and can be used for strain engineering of P. pastoris to accomplish pathway expression, protein production or other applications where the integration of various DNA products is required. It allows for the assembly of up to eight expression units on one plasmid with the ability to use different characterized promoters and terminators for each expression unit. Golden Pi CS vectors are available at Addgene. The online version of this article (10.1186/s12918-017-0492-3) contains supplementary material, which is available to authorized users

    Additional file 2: of GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris

    No full text
    GoldenPiCS modules and plasmids. Modules and plasmids are listed with corresponding cloning- and fusion sites and full sequences. DNA orientation is 5’to 3′. All plasmids are available at Addgene. (XLSX 33 kb
    corecore