10 research outputs found

    Laminin matrix promotes hepatogenic terminal differentiation of human bone marrow mesenchymal stem cells

    Get PDF
    Objective(s):The application of stem cells holds great promises in cell transplants. Considering the lack of optimal in vitro model for hepatogenic differentiation, this study was designed to examine the effects of laminin matrix on the improvement of in vitro differentiation of human bone marrow mesenchymal stem cells (hBM-MSC) into the more functional hepatocyte-like cells. Materials and Methods:Characterization of the hBM-MSCs was performed by immunophenotyping and their differentiation into the mesenchymal-derived lineage. Then, cells were seeded on the laminin-coated or tissue culture polystyrene (TCPS). The differentiation was carried out during two steps. Afterward, the expression of hepatocyte markers such as AFP, ALB, CK-18, and CK-19 as well as the expression of C-MET, the secretion of urea, and the activity of CYP3A4 enzyme were determined. Moreover, the cytoplasmic glycogen storage was examined by periodic acid–Schiff (PAS) staining. Results:The results demonstrated that the culture of hBM-MSC on laminin considerably improved hepatogenic differentiation compared to TCP group. A significant elevated level of urea biosynthesis and CYP3A4 enzyme activity was observed in the media of the laminin-coated differentiated cells (

    Physical Activity and Exercise Promote Peroxisome Proliferator-Activated Receptor Gamma Expression in Adipose Tissues of Obese Adults

    Get PDF
    Background: Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been studied for its potential influence on the functional response of the human body to exercise. We aimed to investigate the association of habitual physical activity (PA) with PPARγ mRNA level in the visceral and subcutaneous adipose tissues (VAT and SAT) in non-obese and obese non-diabetic adults. Methods: VAT and SAT were obtained from 95 individuals, including 40 non-obese (BMI<30kg/m2) and 55 obese (BMI≥30kg/m2) who underwent elective abdominal surgery (Tehran, Iran, 2012-2015). The assessment of habitual PA was performed by a valid and reliable International PA Questionnaire-long form, and the metabolic equivalent of task (MET) was evaluated. Real-time quantitative reverse transcriptase-PCR evaluated the PPARγ expression in VAT and SAT. Results: PPARγ expression in both VAT (1.18 vs. 0.37 fold change, P<0.001) and SAT (2.07 vs. 0.29 fold change, P=0.004) among obese subjects was higher than the non-obese group. After controlling for age, sex, and total energy intake, a positive association was found between total METs and PPARγ expression in both VAT and SAT among obese participants (β=0.22, P=0.007 and β=0.12, P<0.001, respectively). Among obese participants, there was a direct association between leisure time-related METs with VAT PPARγ expression (β=0.05, P=0.026). Moreover, in this group, an association was observed between occupation-related METs with PPARγ in both fat tissues (β=0.11, P=0.002 and β=0.17, P=0.013, respectively), and household work-related METs with SAT PPARγ (β=0.21, P=0.011). Conclusion: High PA as an indispensable part of a healthy lifestyle may exert its beneficial effect by regulating PPARγ expression.

    Clinical Trial: CYP2D6 Related Dose Escalation of Tamoxifen in Breast Cancer Patients With Iranian Ethnic Background Resulted in Increased Concentrations of Tamoxifen and Its Metabolites

    Get PDF
    Introduction: The polymorphic enzyme cytochrome P450 2D6 (CYP2D6) catalyzes a major step in the bioactivation of tamoxifen. Genotyping of clinically relevant CYP2D6 alleles and subsequent dose adjustment is a promising approach to individualize breast cancer therapy. The aim of this study was to investigate the relationship between the plasma levels of tamoxifen and its metabolites and different CYP2D6 genotypes under standard (20 mg/day) and dose-adjusted therapy (Registration ID in Iranian Registry of Clinical Trials: IRCT2015082323734N1).Materials and Methods: Using TaqMan® assays common alleles of CYP2D6 (∗1, ∗2, ∗4, ∗5, ∗6, ∗10, ∗17, and ∗41) and gene duplication were identified in 134 breast cancer patients. Based on CYP2D6 genotypes patients with an activity score 1 (n = 15) and 0–0.5 (n = 2) were treated with tamoxifen adjusted dosage of 30 and 40 mg/day, respectively. The concentration of tamoxifen and its metabolites before and after 4 and 8 months of dose adjustment were measured using LC-MS/MS technology.Results: At baseline, (Z)-endoxifen plasma concentrations (33 ± 15.5, 28.1 ± 14, 26.6 ± 23.4, 14.3 ± 8.6, and 10.7 ± 5.5 nmol/l for EM/EM, EM/IM, EM/PM, IM/IM and PM/PM, respectively) and the metabolic ratio (Z)-Endoxifen/N-desmethyltamoxifen (0.0558 ± 0.02, 0.0396 ± 0.0111, 0.0332 ± 0.0222, 0.0149 ± 0.0026, and 0.0169 ± 0.0177 for EM/EM, EM/IM, EM/PM, IM/IM, and PM/PM, respectively) correlated with CYP2D6 genotype (Kruskal–Wallis p = 0.013 and p &lt; 0.0001, respectively). Dose escalation to 30 and 40 mg/day in patients with a CYP2D6 activity score of 1 (n = 15) and 0–0.5 (n = 2) resulted in a significant increase in (Z)-endoxifen plasma levels (22.17 ± 24.42, 34.43 ± 26.54, and 35.77 ± 28.89 nmol/l at baseline, after 4 and 8 months, respectively, Friedman p = 0.0388) along with the plasma concentrations of tamoxifen and its other metabolites. No severe side effects were recorded during dose escalation.Conclusion: For the first time, we show the feasibility of dose escalation of tamoxifen in breast cancer patients with compromised CYP2D6 activity and Iranian ethnic background to increase the plasma concentrations of (Z)-endoxifen

    Synthesis and characterization of mesoporous TiC nanopowder/nanowhisker with low residual carbon processed by sol–gel method

    No full text
    In the present research, Titanium carbide nanopowders and nanowhiskers were synthesized by the sol-gel process using phenolic resin and titanium alkoxide as precursors. The synthesis process was performed in a quaternary alkoxide-catalyst-dispersant-water system. The effect of synthesis temperature and soaking time on the free carbon content and the formation and morphology of TiC nanopowders was investigated. It was revealed that titanium carbide began to nucleate at a temperature of approximately 1200 °C. This process ended at 1400 °C. Surface studies demonstrated that the pores on the surface of the synthesized nanopowders were in the meso range and had a specific surface area of 150 m2/g. Microstructural images indicated that over time, TiC nanowhiskers heterogeneously nucleated from the particle surface and grew in a soaking time of 3 h. The free carbon content detected in the synthesized product under a soaking time of 3 h was reported to be less than 1%

    Human Bone Marrow Mesenchymal Stem Cell Behaviors on PCL/Gelatin Nanofibrous Scaffolds Modified with A Collagen IV-Derived RGD-Containing Peptide

    No full text
    Objective: We introduce an RGD (Arg-Gly-Asp)-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties. Materials and Methods: In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel) hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An iodine-modified phenylalanine was introduced in the peptide to track the immobilization process. Native and modified scaffolds were characterized with scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). We studied the osteogenic and adipogenic differentiation potential of human bone marrow-derived mesenchymal stem cells (hBMSCs). In addition, cell adhesion and proliferation behaviors of hBMSCs on native and peptide modified scaffolds were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4',6-diamidino-2-phenylindole (DAPI) staining, and the results compared with tissue culture plate, as the control. Results: FTIR results showed that the peptide successfully immobilized on the scaffold. MTT assay and DAPI staining results indicated that peptide immobilization had a dramatic effect on cell adhesion and proliferation. Conclusion: This peptide modified nanofibrous scaffold can be a promising biomaterial for tissue engineering and regenerative medicine with the use of hBMSCs

    Additive and additive-free treatment technologies for pulp and paper mill effluents: Advances, challenges and opportunities

    Get PDF
    In the present manuscript, novel effluent treatment processes for pulp and paper mill effluents are divided into two categories: a) those involving the use of chemical additives and b) those which are free of such chemicals. It is especially of high importance for pulp and paper industry to adopt the most efficient and cost-effective treatment methods. This paper critically reviews the recent studies on the treatment of pulp and paper mill effluents while providing suggestions for further studies on the application of various physic-chemical and biological methods for the treatment of such complex effluents containing a number of recalcitrant pollutants. Keywords: Pulp and paper industry, Industrial effluents, Chemical additives, Non-additive treatment processe
    corecore