12 research outputs found

    Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue

    Get PDF
    Previous work indicated that lysine-specific demethylase 1 (Lsd1) can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT) and find that BAT- selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT)-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1- deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT

    Allelic polymorphism of endothelial NO-synthase gene and its functional manifestations

    No full text
    Investigation of the mechanisms of phenotypic realization of allelic polymorphism of the eNOS gene has shown that the level of eNOS mRNA and activity of this enzyme in platelets depends from genotype. We identified a T-786→C polymorphism in the promoter region, a variable number of tandem repeats (4a/4b) in intron 4 and the G894→T polymorphism in exon 7 of the eNOS gene in isolated human platelets. We measured eNOS mRNA in isolated platelets by reverse transcription-PCR and eNOS enzyme activity by fluorimetric detection system FCANOS-1 using diaminofluorescein diacetate (DAF-2A). It was shown that the level of eNOS mRNA is the lowest for the -786C/C promoter genotype. In exon 7 homozygotes (894T/T) the level of RNA is lower than in normal homozygotes (894G/G), but higher than in heterozygotes (894G/T). The eNOS activity in platelets is lower in carriers of the 786C/C promoter genotype than in normal homozygotes (2.1 × P=0.03), and lower comparing to heterozygotes (2.9 × P>0.05). The eNOS activity accompanying the 894T/T variant of exon 7 is also lower than in normal homozygotes (P>0.05). Regarding the polymorphism in intron 4 - the enzyme's activity is lower in carriers of the 4a/4a genotype comparing to normal homozygotes (1.7 × P>0.05) and lower than in heterozygotes (1.9 × P>0.05). These results allow one to conclude that the T-786→C polymorphism of the eNOS gene promoter most significantly affects the gene expression and eNOS activity

    Methylation of the Sterol Nucleus by STRM-1 Regulates Dauer Larva Formation in Caenorhabditis elegans

    Get PDF
    In response to pheromone(s), Caenorhabditis elegans interrupts its reproductive life cycle and enters diapause as a stress-resistant dauer larva. This decision is governed by a complex system of neuronal and hormonal regulation. All the signals converge onto the nuclear hormone receptor DAF-12. A sterol-derived hormone, dafachronic acid (DA), supports reproductive development by binding to DAF-12 and inhibiting its dauer-promoting activity. Here, we identify a methyltransferase, STRM-1, that modulates DA levels and thus dauer formation. By modifying the substrates that are used for the synthesis of DA, STRM-1 can reduce the amount of hormone produced. Loss of STRM-1 function leads to elevated levels of DA and inefficient dauer formation. Sterol methylation was not previously recognized as a mechanism for regulating hormone activity. Moreover, the C-4 sterol nucleus methylation catalyzed by STRM-1 is unique to nematodes and thus could be a target for therapeutic strategies against parasitic nematode infections

    Identification of functional lipid metabolism biomarkers of brown adipose tissue aging

    No full text
    Objective: Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. Methods: Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. Results: Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. Conclusions: Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions. Keywords: Brown adipose tissue, Aging, Ceramides, Sphingolipids, Dolichol lipid

    Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue

    Get PDF
    Previous work indicated that lysine-specific demethylase 1 (Lsd1) can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT) and find that BAT-selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT)-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1-deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT
    corecore