151 research outputs found

    EORTC-related new drug discovery and development activities: role of the Pharmacology and Molecular Mechanisms Group

    Get PDF
    Abstract The EORTC Pharmacology and Molecular Mechanism Group (PAMM) focuses on applied research to translate basic/fundamental research discoveries in cancer biology into new drug discovery and development. PAMM provides a unique platform on the pharmacology, pharmacokinetics, pharmacodynamics of drug effects, molecular mechanisms of anticancer agents, and drug-related molecular pathology. For these purposes the group stimulates the interaction between basic scientists and clinicians in order to perform translational research on the pharmacology and molecular mechanisms of anticancer agents in Europe. The group has extensive expertise in various disciplines of pharmacology and has developed standards for studies performed in conjunction with clinical trials equivalent to those of good laboratory practice (GLP). The group serves as master organization for other EORTC (sub-)committees in the maximal interest of these groups and of the EORTC as a whole. PAMM merged with Preclinical Therapeutics Models Group (PTMG) in 2000 and with the Screening and Pharmacology Group (SPG) in 2003. The latter group continued as the Drug Discovery Committee within PAMM. The groups have always been involved in the development of anticancer agents, evolving from platinum analogs, anthracyclines, nitrosoureas, antifolates in the 1980's, to drugs derived from natural sources (trabectedin, taxanes) in the 1990's, and anti-signaling drugs, DNA alkylators, in the last decade. Several of these drugs have been registered. Mechanistic studies focused on drug activation/inactivation, target (DNA, receptors) in relation to efficacy and toxicity such as with several antimetabolites (5-fluorouracil, methotrexate), topoisomerase inhibitors (irinotecan), tyrosine kinase inhibitors (imatinib), acridones (C-1311), etc. The group recently included pharmacogenetics in the identification of genetic polymorphisms in order to use this information for personalized therapy

    Prognostic relevance of ALT-associated markers in liposarcoma: a comparative analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most cancers maintain telomeres by activating telomerase but a significant minority, mainly of mesenchymal origin, utilize an alternative lengthening of telomeres (ALT) mechanism.</p> <p>Methods</p> <p>In this study we comparatively analyzed the prognostic relevance of ALT in a monoinstitutional series of 85 liposarcoma patients as a function of the marker (ALT-associated promyelocytic leukemia bodies (APB) versus heterogeneous telomeres) used to classify the tumor.</p> <p>Results</p> <p>Independently of the detection approach, ALT proved to be a prognostic discriminant of increased mortality, although the prognostic relevance of the two markers appeared at different follow-up intervals (at 10 years for APB and 15 years for telomeres).</p> <p>Conclusions</p> <p>Overall, we confirmed ALT as an indicator of poor clinical outcome in this disease and provide the first evidence that the sensitivity of the ALT predictive power depends, at least in part, on the method used.</p

    Androgen Receptor-Directed Molecular Conjugates for Targeting Prostate Cancer

    Get PDF
    Due to its central role in the cellular biology of prostate cancer (PC), androgen receptor (AR) still remains an important therapeutic target for fighting this tumor. Several drugs targeting AR have been reported so far, and many new molecules are expected for the future. In spite of their antitumor efficacy, these drugs are not selective for malignant cells and are subjected to AR-mediated activation of drug resistance mechanisms that are responsible for several drawbacks, including systemic toxicity and disease recurrence and metastasis. Among the several strategies considered to overcome these drawbacks, very appealing appears the design of hybrid small-molecule conjugates targeting AR to drive drug action on receptor-positive PC cells. These compounds are designed around on an AR binder, which selectively engages AR with high potency, coupled with a moiety endowed with different pharmacological properties. In this review we focus on two classes of compounds: a) small-molecules and AR-ligand based conjugates that reduce AR expression, which allow down-regulation of AR levels by activating its proteasome-mediated degradation, and b) AR-ligand-based conjugates for targeting small-molecules, in which the AR binder tethers small-molecules, including conventional antitumor drugs (e.g., cisplatin, doxorubicin, histone deacetylase inhibitors, as well as photo-sensitizers) and selectively directs drug action toward receptor-positive PC cells

    Targeting of RET oncogene by naphthalene diimide-mediated gene promoter G-quadruplex stabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer

    Get PDF
    Medullary thyroid cancer (MTC) relies on the aberrant activation of RET proto-oncogene. Though targeted approaches (i.e., tyrosine kinase inhibitors) are available, the absence of complete responses and the onset of resistance mechanisms indicate the need for novel therapeutic interventions. Due to their role in regulation of gene expression, G-quadruplexes (G4) represent attractive targets amenable to be recognized or stabilized by small molecules. Here, we report that exposure of MTC cells to a tri-substituted naphthalene diimide (NDI) resulted in a significant antiproliferative activity paralleled by inhibition of RET expression. Biophysical analysis and gene reporter assays showed that impairment of RET expression was consequent to the NDI-mediated stabilization of the G4 forming within the gene promoter. We also showed for the first time that systemic administration of the NDI in mice xenotransplanted with MTC cells resulted in a remarkable inhibition of tumor growth in vivo. Overall, our findings indicate that NDI-dependent RET G4 stabilization represents a suitable approach to control RET transcription and delineate the rationale for the development of G4 stabilizing-based treatments for MTC as well as for other tumors in which RET may have functional and therapeutic implications

    MIR205HG/LEADR Long Noncoding RNA Binds to Primed Proximal Regulatory Regions in Prostate Basal Cells Through a Triplex- and Alu-Mediated Mechanism

    Get PDF
    Aside serving as host gene for miR-205, MIR205HG transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as LEADR (Long Epithelial Alu-interacting Differentiation-related RNA). We previously showed the presence of Alu sequences in the promoters of genes modulated upon MIR205HG/LEADR manipulation. Notably, an Alu element also spans the first and second exons of MIR205HG/LEADR, suggesting its possible involvement in target selection/binding. Here, we performed ChIRP-seq to map MIR205HG/LEADR chromatin occupancy at genome-wide level in prostate basal cells. Our results confirmed preferential binding to regions proximal to gene transcription start site (TSS). Moreover, enrichment of triplex-forming sequences was found upstream of MIR205HG/LEADR-bound genes, peaking at −1,500/−500 bp from TSS. Triplexes formed with one or two putative DNA binding sites within MIR205HG/LEADR sequence, located just upstream of the Alu element. Notably, triplex-forming regions of bound genes were themselves enriched in Alu elements. These data suggest, from one side, that triplex formation may be the prevalent mechanism by which MIR205HG/LEADR selects and physically interacts with target DNA, from the other that direct or protein-mediated Alu (RNA)/Alu (DNA) interaction may represent a further functional requirement. We also found that triplex-forming regions were enriched in specific histone modifications, including H3K4me1 in the absence of H3K27ac, H3K4me3 and H3K27me3, indicating that in prostate basal cells MIR205HG/LEADR may preferentially bind to primed proximal regulatory elements. This may underscore the need for basal cells to keep MIR205HG/LEADR target genes repressed but, at the same time, responsive to differentiation cues

    The Oncogenic Signaling Pathways in BRAF-Mutant Melanoma Cells are Modulated by Naphthalene Diimide-Like G-Quadruplex Ligands

    Get PDF
    Melanoma is the most aggressive and deadly type of skin cancer. Despite the advent of targeted therapies directed against specific oncogene mutations, melanoma remains a tumor that is very difficult to treat, and ultimately remains incurable. In the past two decades, stabilization of the non-canonical nucleic acid G-quadruplex structures within oncogene promoters has stood out as a promising approach to interfere with oncogenic signaling pathways in cancer cells, paving the way toward the development of G-quadruplex ligands as antitumor drugs. Here, we present the synthesis and screening of a library of differently functionalized core-extended naphthalene diimides for their activity against the BRAFV600E-mutant melanoma cell line. The most promising compound was able to stabilize G-quadruplexes that formed in the promoter regions of two target genes relevant to melanoma, KIT and BCL-2. This activity led to the suppression of protein expression and thus to interference with oncogenic signaling pathways involved in BRAF-mutant melanoma cell survival, apoptosis, and resistance to drugs. This G-quadruplex ligand thus represents a suitable candidate for the development of melanoma treatment options based on a new mechanism of action and could reveal particular significance in the context of resistance to targeted therapies of BRAF-mutant melanoma cells

    miR-21: an oncomir on strike in prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrant expression of microRNAs, small non-coding RNA molecules that post-transcriptionally repress gene expression, seems to be causatively linked to the pathogenesis of cancer. In this context, miR-21 was found to be overexpressed in different human cancers (e.g. glioblastoma, breast cancer). In addition, it is thought to be endowed with oncogenic properties due to its ability to negatively modulate the expression of tumor-suppressor genes (e.g. <it>PTEN</it>) and to cause the reversion of malignant phenotype when knocked- down in several tumor models. On the basis of these findings, miR-21 has been proposed as a widely exploitable cancer-related target. However, scanty information is available concerning the relevance of miR-21 for prostate cancer. In the present study, we investigated the role of miR-21 and its potential as a therapeutic target in two prostate cancer cell lines, characterized by different miR-21 expression levels and <it>PTEN </it>gene status.</p> <p>Results</p> <p>We provide evidence that miR-21 knockdown in prostate cancer cells is not sufficient <it>per se </it>i) to affect the proliferative and invasive potential or the chemo- and radiosensitivity profiles or ii) to modulate the expression of the tumor-suppressors PTEN and Pdcd4, which in other tumor types were found to be regulated by miR-21. We also show that miR-21 is not differently expressed in carcinomas and matched normal tissues obtained from 36 untreated prostate cancer patients subjected to radical prostatectomy.</p> <p>Conclusions</p> <p>Overall, our data suggest that miR-21 is not a central player in the onset of prostate cancer and that its single hitting is not a valuable therapeutic strategy in the disease. This supports the notion that the oncogenic properties of miR-21 could be cell and tissue dependent and that the potential role of a given miRNA as a therapeutic target should be contextualized with respect to the disease.</p
    • …
    corecore