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L E T T E R TO TH E ED I TO R
Microenvironment modulation and enhancement of
antilymphoma therapy by the heparanase inhibitor roneparstat
To the Editor

The standard management of diffuse large B‐cell lymphoma (DLBCL)

relies on the chemotherapy combination including cyclophospha-

mide, doxorubicin, vincristine, and prednisone (CHOP). Although

the introduction of anti‐CD20 monoclonal antibody rituximab with

CHOP chemotherapy has demonstrated a dramatic improvement in

clinical outcome in CD20 positive patients,1 most of them still face

disease relapse. Thus, the challenge still remains to find more

effective therapeutic approaches. The role of tumor microenviron-

ment in modulating the drug sensitivity is increasingly becoming a

key consideration for the development of novel anticancer agents.

The endoglycosidase heparanase, through the cleavage of the hepa-

ran sulfate chains of heparan sulfate proteoglycans, partecipates in

degradation and remodeling of the extracellular matrix (ECM) and

promotes the functions of several bioactive molecules.2 Clinically,

heparanase is expressed at high levels in various malignancies and

positively associated with progression and unfavorable prognosis.3

Notably, recent advances have indicated a relevant role for

heparanase in angiogenesis, metastasis, inflammation,3-5 and

lymphoma growth,6,7 thus suggesting the endoglycosidase as a

promising target for the development of innovative anticancer ther-

apy. Here, using the SUDHL‐4 as a preclinical model of aggressive

DLBCL poorly responsive to single‐agent conventional therapies8

and expressing heparanase (Figure 1A i left), we report the effects

induced by the heparanase inhibitor roneparstat, an heparan sulfate

mimic glycol‐split heparin,9 in combination with clinically available

agents.

Although roneparstat alone induced an early tumor growth

inhibition rapidly resolved in tumor re‐growth, as indicated by the

low log cell kill (LCK) values (Table 1), the addition of the heparanase

inhibitor could overcome the poor susceptibility of SUDHL‐4

xenografts to dexamethasone and cyclophosphamide. Indeed, the

combination resulted in a strongly enhanced tumor growth

inhibition, supported by improvement in LCK values compared with

single agent therapies (Figure 1A ii‐iii, Table 1). In agreement with

the high CD20 levels (Figure 1A i), SUDHL‐4 tumors displayed a rel-

evant sensitivity to rituximab, with 1 out of 6 treated mice

experiencing complete response. Strikingly, the combination of

roneparstat with rituximab produced the most impressive response,

characterized by a remarkable increase in LCK value, complete

regression in 5 out of 6 treated mice, and no evidence of disease
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in 3 out of 6 mice at 80 days after treatment interruption

(Figure 1A iv, Table 1).

Histological analyses of tumors revealed the lack of a direct

citotoxicity of roneparstat on lymphoma cells, rather inflammatory

cell infiltration and fibro‐vascular stroma disarrangement (Figure 1B

i‐ii), whereas a significant increase in cytotoxic effect (P < 0.05)

(Figure 1C i) associated to a pronounced monocytoid and granulocytic

myeloid cell infiltration was detected in rituximab‐treated tumors

(Figure 1B i). Notably, combination‐treated tumors displayed a signif-

icantly higher number of apoptotic/necrotic cells compared to single

treatment (P < 0.0001) (Figure 1C i) associated to a conspicuous

inflammatory cell infiltration and an impaired stromal scaffolding as

evidenced by an altered and incomplete reticulin fiber network

(Figure 1B i‐ii). Because of the deep stromal alteration induced by

the combination treatment, we investigated as a possible mechanism

through which roneparstat coud have positively modulated the tumor

sensitivity to rituximab, the recruitment of complement components,

the first murine component of the classical pathway C1q, and the

activation factor C5. The in situ analyses showed a positive staining

for C1q factor located near stromal elements in rituximab‐ and in

combination‐treated tumors, whereas it appeared confined to

scattered infiltrating histiocytic cells in untreated and roneparstat‐

treated tumors (Figure 1B iii). Consistently, positive C5 staining

was detected on the surface of lymphomatous and stromal elements

in rituximab‐treated and, more conspicuously, in combination‐

treated tumors, whereas it was restricted to few infiltrating myeloid

elements in untreated and roneparstat‐treated tumors (Figure 1B iv,

Figure 1C ii).

To sum up, our present findings provide preclinical evidence that

targeting the tumor microenvironment by roneparstat may enhance

the antitumor activity of approved therapies for aggressive lymphomas

with particular references to rituximab. These findings have clinical

implications considering that roneparstat has completed phase I clinical

trial in patients with multiple myeloma and early reports indicated a

good tolerability.10
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FIGURE 1 Antitumor activity of roneparstat in combination with antilymphoma agents and effects on tumor and stroma of SUDHL‐4 xenografts.
A (i) Western blot analysis revealed similar expression levels of heparanase (HPA‐1) in the indicated B‐NHL cell lines; β‐actin was used as loading
control. Cropped images are shown (left panel). Flow cytometric analysis of CD20 in the SUDHL‐4 cell line. Histograms of anti‐CD20 stained
samples (open) and isotype control‐stained samples (shaded) are representative of 3 independent analyses (right panel). Antitumor activity of
roneparstat alone and in combination with (ii) dexamethasone or (iii) cyclophosphamide or (iv) rituximab in SCID mice (5‐7 animals/group) injected
s.c. with SUDHL‐4 tumor fragments. Drug treatment started when tumor volume was around 50 mm3. Roneparstat was administered s.c. (60 mg/
kg/injection) twice a day for 5 d/wk for 3 wk in (ii) and (iv) and for 4 wk in (iii). Dexamethasone was administered i.p. (2 mg/kg) daily for 5 d/wk for
3 wk; cyclophosphamide was injected i.v. (50 mg/kg) every 7 d for 3 times; rituximab was given i.p. (5 mg/kg) every 3‐4 d, for 6 times. Control mice
were treated with vehicle alone. Tumor volumes were measured twice a week and reported as mean tumor volume ± S.E.M. B Histological/
immunohistochemical analyses on tumors (300‐400 mm3) explanted after 4 d of treatment with roneparstat and/or rituximab (3‐4 animals/group).
(i) Representative microphotographs of tumor sections stained with hematoxylin and eosin. Rituximab‐treated tumors displayed a remarkable
presence of apoptotic/necrotic cells (inset); inflammatory cell infiltration and signs of fibro‐vascular stroma disarrangement (asterisk) characterized
roneparstat‐treated tumors; combination therapy‐treated tumors showed several cells with apoptotic nuclei (arrows) and a marked impairment of
stromal architecture (original magnification ×20 up, ×40 down, inset ×63). (ii) Representative images of stromal reticulin network visualized with
Gomori silver staining. Reticulin deposition was evidenced in the form of black/gray stripes. (original magnification ×20). (iii) Representative
microphotographs showing the immunohistochemical detection of the first murine complement factor C1q and (iv) the complement activation
factor C5 (original magnification ×20; inset ×63). Immunostaining was revealed by polymer detection kit and AEC (3‐amino‐9‐ethylcarbazole)
substrate chromogen. The slides were counterstained with Harris hematoxylin. C Quantitative analysis of apoptotic/necrotic figures (i) in tumor
sections from mice treated with roneparstat (ron), rituximab (rtx), roneparstat plus rituximab and untreated control mice (ctrl). For each sample, the
number of apoptotic/necrotic cells was counted in 10 randomly selected microscopic fields (40×). For quantification of C5 complement factor (ii), 5
pictures/sample at 4× magnification were captured covering the vast majority of the sample, and analyzed using image analysis software. Data are
reported as mean ± S.D.; § P < 0.05, §§§ P < 0.0001 by ANOVA; post hoc tests by Bonferroni's multiple comparison test. *P < 0.05, ***P < 0.0001 by
ANOVA; post hoc test by Dunnet's multiple comparison test
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TABLE 1 Antitumor effects of roneparstat in combination with clinical agents against human SUDHL‐4 xenografts

Drug Dose (mg/kg) Schedule MaxTVI%a (day) TVI(%)b (day) CRc NEDd LCKe

Roneparstat 60 2qdx5/wx3w 100(11) 2(17) ‐ ‐ 0.2

Dexamethasone 2 qdx5/wx3w 100(11) 17 ‐ ‐ 0.4

Combination 89** ‐ ‐ 1.4

Roneparstat 60 2qdx5/wx4w 75(14) 52(21) ‐ ‐ 0.5

Cyclophosphamide 50 q7dx3 70(14) 66 ‐ ‐ 0.5

Combination 96** ‐ ‐ 1.4

Roneparstat 60 2qdx5/wx3w 75(14) 29(20) ‐ ‐ 0.5

Rituximab 5 q3‐4dx6 99(20) 99 1/6 ‐ 2.5

Combination 99 5/6* 3/6 12.5

All treatments were well tolerated.
aHighest value of tumor volume inhibition percentage (TVI %) achieved by single‐agent treatment; in parentheses, the day of evaluation.
bTVI% in treated over control mice; in parentheses the day of evaluation corresponding to the maximum inhibition by the combination (in most experiments
at the end of treatment).
cCR, complete regression, ie, disappearance of the tumors lasting at least 10 d after the end of treatments.
dNED, mice with no evidence of disease at the end of the experiment.
eLCK, Log10 cell kill to reach 500 mm3 of tumor volume.

**P < 0.01 by Student's test vs single drug‐treated mice.

*P < 0.05 by Fisher's exact test vs single drug‐treated mice.
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