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Due to its central role in the cellular biology of prostate cancer (PC), androgen receptor

(AR) still remains an important therapeutic target for fighting this tumor. Several drugs

targeting AR have been reported so far, and many new molecules are expected for the

future. In spite of their antitumor efficacy, these drugs are not selective for malignant

cells and are subjected to AR-mediated activation of drug resistance mechanisms that

are responsible for several drawbacks, including systemic toxicity and disease recurrence

andmetastasis. Among the several strategies considered to overcome these drawbacks,

very appealing appears the design of hybrid small-molecule conjugates targeting AR

to drive drug action on receptor-positive PC cells. These compounds are designed

around on an AR binder, which selectively engages AR with high potency, coupled with

a moiety endowed with different pharmacological properties. In this review we focus

on two classes of compounds: a) small-molecules and AR-ligand based conjugates

that reduce AR expression, which allow down-regulation of AR levels by activating its

proteasome-mediated degradation, and b) AR-ligand-based conjugates for targeting

small-molecules, in which the AR binder tethers small-molecules, including conventional

antitumor drugs (e.g., cisplatin, doxorubicin, histone deacetylase inhibitors, as well as

photo-sensitizers) and selectively directs drug action toward receptor-positive PC cells.

Keywords: prostate cancer, drug resistance, drug conjugates, proteolysis targeting chimeras, selective androgen

receptor degraders

INTRODUCTION

Prostate cancer (PC) is the leading cause of tumor death in men of Western countries and the
malignancy is increasing in developing nations (Jemal et al., 2011). Androgen receptor (AR)
represents a pivotal driving force in the development and progression of PC. Upon stimulation
with androgens, AR translocates to the nucleus, where it binds to thousands of sites throughout
the human genome to regulate transcription of responsive genes, many of which are involved
in the control of crucial cellular functions such as growth and proliferation. In addition, AR
has an impact on prostate cancer development also by affecting genomic stability and DNA
repair (Mills, 2014). Early diagnosed patients are treated with surgery or radiotherapy, which
fail in 10–20% of cases. Recurrent patients are exposed to androgen deprivation therapy (ADT).
However, ADT efficacy is time-limited and most patients undergo disease progression and develop
castration-resistant prostate cancer (CRPC) (Watson et al., 2015). These tumors are often still
dependent on AR and continue to growth in presence of very low levels of circulating androgens
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(Huang et al., 2018). In spite of the antitumor efficacy
demonstrated by antiandrogen drugs (e.g., bicalutamide,
flutamide, ARN-509, enzalutamide), the emergence of AR
resistance mechanisms, including (a) AR gain-of-function
mutations with increased sensitivity to androgens or increased
recruitment of AR co-activators; (b) AR amplification/over-
expression; (c) androgen independent AR activation; (d)
expression of constitutively active AR splice variants; (e)
intratumoral conversion of adrenal androgens and androgen
production, are responsible for treatment failure (Guerrini et al.,
2014; Ferroni et al., 2017; Howard et al., 2018; Huang et al., 2018;
Paschalis et al., 2018). In this scenario, the development of new
drugs represents a critical need, and novel therapies for PC are
emerging (Sonnenburg and Morgans, 2018). Among these, the
rational design of multivalent conjugates carrying a moiety that
interacts with AR (AR binder) coupled with a residue endowed
with antitumor activity represents a intriguing strategy for
targeting malignant PC without affecting normal cell viability.
The rational engineering of hybrid small-molecules is aimed
not only at bypassing drug resistance, but also to selectively
target tumor cells and, consequently, to reduce systemic toxicity.
Here we focus on two classes of compounds: a) small-molecules
and AR-ligand based conjugates that reduce AR expression,
which allow down-regulation of AR levels by activating its
proteasome-mediated degradation and b) AR-ligand based
conjugates for targeting small-molecules, in which the AR binder
tethers small-molecules, including conventional antitumor drug
(e.g., cisplatin, doxorubicin, histone deacetylase inhibitors, as
well as photo-sensitizers) and selectively directs drug action
toward receptor-positive PC cells.

SMALL-MOLECULES AND AR-LIGAND
BASED CONJUGATES THAT REDUCE
AR EXPRESSION

Selective AR degraders (SARD) and PROteolysis Targeting
Chimeras (PROTAC) are two classes of compounds
endowed with antitumor activity on hormone-refractory
PC that knock-down AR (wt and mutant) content via
proteasome-mediated degradation.

Selective AR Degraders (SARD)
The first SARD reported is the benzyl-piperazine derivative
1a, Figure 1 (Bradbury et al., 2011). The compound contains
a cyanobenzyl moiety that favors the interaction with AR,
and resulted from a two-dimensional pharmacophore modeling
which correlates the binding of diidrotestosterone (DHT) and
bicalutamide to AR compared with a series of benzyl-piperazine
derivatives. The molecule caused moderate receptor down-
regulation in LNCaP cells, and was supposed to produce adverse
cardiovascular effects due to a predicted potentiation of the
hERG ion channel. This drawback has been tackled by using
a comprehensive medicinal chemistry optimization programme
which led to compound AZD3514 (1b), Figure 1 (Bradbury
et al., 2013). The dihydrotriazolopyridazine derivative is devoid
of hERG effect, impairs ligand-driven nuclear translocation of the

receptor and down-regulates AR in vitro and in vivo (Bradbury
et al., 2013; Loddick et al., 2014). Two phase I clinical studies
(NCT01351688 and NCT01162395; www.clinicaltrials.gov) have
been completed in metastatic CRPC patients. In spite of the
important side effects observed (nausea and vomiting), patients
treated with AZD3514 showed significant Prostate-Specific-
Antigen (PSA) reduction and disease stabilization (Cummings
et al., 2014; Omlin et al., 2015).

Another SARD is ASC-J9 (1c), Figure 1 (Guo et al., 2017).
This molecule showed interesting capability to degrade both
wild-type (wt) AR and Androgen-Receptor-splice-Variant 7 (AR-
V7), a receptor variant found in ADT-treated patients that
lacks ligand-binding domain (Yamashita et al., 2012; Wang
et al., 2017). Furthermore, Wang et al. (2016a) reported the
interesting activity of ASC-J9 on AR-F876L mutant, a condition
found in enzalutamide-resistant CRPC patients. More recently,
in drug combination studies, the compound was reported to
counteract AR enhancement observed in CRPC cells exposed
to docetaxel, and consequently increase docetaxel sensitivity.
This finding suggests a possible drug combination strategy for
docetaxel-resistant PC patients (Luo et al., 2018). Additionally,
ASC-J9 was found to negatively impact on PC proliferation
and invasion by perturbing, via AR reduction, AR-STAT3-CCL2
/CCL3 /CCL4, AR/FANS as well as AR-p62 axis (Jiang et al.,
2012; Wang et al., 2012; Fang et al., 2013; Lin et al., 2013,
2018; Wen et al., 2016). Based on these results, ASC-J9 has been
selected for clinical investigations and recently Food-and-Drug-
Administration (FDA) approved different solvents for compound
formulation (Cheng et al., 2018)

A significant reduction of AR-V7 level is observed in PC
cells treated with niclosamide (1d) (Figure 1), a drug approved
by FDA for anti-helminthic therapy (Elshan et al., 2018;
Sobhani et al., 2018). By reducing AR-V7, niclosamide inhibits
receptor transcriptional activity and blocks its recruitment on
the PSA promoter region (Liu et al., 2014). The significant
tumor growth reduction observed in enzalutamide- or
abiraterone acetate-insensitive xenograft bearing mice treated
with the drug combinations niclosamide/enzalutamide or
niclosamide/abiraterone acetate suggested possible drug
combination interventions for enzalutamde- or abiraterone
acetate-resistant CRPC patients (Liu et al., 2014, 2016, 2017).
Two phase I trials (NCT03123978 and NCT02532114) including
niclosamide and enzalutamide, and one phase II clinical study
(NCT02807805) combining niclosamide with abiraterone acetate
have been activated (www.clinicaltrials.gov). Results of the phase
I study recently concluded indicate that, due to the toxicity
observed, niclosamide is not a suitable drug for repurposing as a
CRPC treatment (Schweizer et al., 2018).

SARD also includes a class of compounds containing a
hydrophobic residue (e.g., chemical degrons) coupled with an
AR ligand. The hydrophobic moiety mimics a partially denatured
protein state (hydrophobic tagging) that recruits chaperons
and in turn induces proteasome-mediated degradation of the
receptor (Lai and Crews, 2017). Among the chemical degrons
considered, adamantane group was found very interesting, and
the conjugation of an adamantane moiety with the AR agonist
RU59063 resulted in SARD279 (1e) (Figure 1) (Toure andCrews,
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FIGURE 1 | Chemical structures of AR-ligand based conjugates that reduce AR expression. The chemical structures of Selective AR degraders (SARD, 1a–e) and

PROteolysis TArgeting Chimeras (PROTAC, 2a–e) are reported.
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2016). In spite of the 37-fold reduction in AR binding affinity
observed for the conjugate compared with parent RU59063,
SARD279 reduced receptor levels (including AR-F876L variant)
and in turn the expression of AR-related genes. This finding is
corroborated by the capability of the compound to overcome
enzalutamide resistance in CRPC cells (Gustafson et al., 2015).

PROteolysis Targeting Chimeras (PROTAC)
Very interesting for PC therapy is PROTAC, a class of
compounds containing two recruiting ligands: a E3-ubiquitin
ligase binding moiety and a AR binder. By interacting with AR,
these chimeras direct the ligase activity on the exposed lysines
of the receptor and favor ubiquitination/polyubiquitination and
in turn its proteasome-mediated degradation (Churcher, 2018).
The first PROTAC engineered for fighting PC merges the E3-
ubiquitin ligase MDM2 ligand nutilin with a non-steroidal AR
binder via a Polyethylene-Glycol (PEG) linker (2a) (Figure 1)
(Schneekloth et al., 2008). The proof of principle that the
compound activates the protesome-mediated degradation of AR
is the observation that no down-regulation of the receptor,
and consequently no compound activity, was observed in cells
pretreated with a proteasome inhibitor (Toure and Crews, 2016).

Another family of proteins considered for PROTAC strategy
is the bromodomain and extraterminal (BET) proteins, e.g., BRD
2, 3, and 4. These proteins are AR co-activators that activate
receptor-related functions. Compounds that disrupt AR-BRD
interaction by inducing BRD degradation impair PC growth
(Raina and Crews, 2017). A molecule endowed with this function
is ARV-771 (2b) (Figure 1) (Raina et al., 2016). The compound
contains a von Hippel-Landau E3-ligase moiety coupled with
a selective BRD binder, namely JQ1. ARV-771 attenuates AR
signaling of both wt and AR-V7 receptor variant, reduces the
levels of BRD proteins, and activates apoptosis via Poly-ADP-
Ribose-Polymerase (PARP) cleavage and caspase 3/7 activation.
Moreover, ARV-771 reduces CRPC cells proliferation in vitro
and induces antitumor activity in CW22Rv1 and VCaP tumor
xenograft models. In this context, Salami et al. reported the
chimera ARCC-4 (2c), a compound containing the von Hippel-
Landau E3-ligase moiety coupled with enzalutamide for AR
targeting (Salami et al., 2018). Compared with enzalutamide,
ARCC-4 better down-regulates AR, including mutant forms
(F876L, T877A, L702H, H874Y, M896V), and is more active in
reducing cell proliferation and in inducing caspase 3/7-mediated
apoptosis in CRPC cell lines.

Specific and Non-genetic Inhibitor-of-Apoptosis proteins
(IAPs)-dependent Protein Eraser (SNIPER) is a peculiar type of
PROTAC which contains a IAP ligand functioning as an E3-
ubiquitin ligase binder (Lai and Crews, 2017). The SNIPER by
Itoh et al. (2011) coupled bestatin (IAP ligand) with a steroidal
AR binder (2d, Figure 1). The compound significantly reduced
AR levels in AR-expressing breast cancer MCF7 cells. Very
recently, another SNIPER based on a different IAP ligand (LCL-
161) conjugated with a non-steroidal AR antagonist has been
reported by Shibata et al. (2018), 2e. The compound, ineffective
on AR-independent PC3 cells, markedly reduced the cell growth
of AR-dependent (VCaP and LNCaP) cell lines. Effective and
specific proteasome-mediated knockdown of AR and apoptotic

cell death (PARP and caspase 3 cleavages) have been reported
in VCaP cells treated with 2e. These findings paralleled with
the reduced expression of receptor-associated genes (PSA,
TMPRSS2, KLK2, and NKX3.1), and this behavior reverted when
cells were pretreated with the proteasome inhibitor MG132.

AR-LIGAND BASED CONJUGATES FOR
TARGETING SMALL-MOLECULES

It is well-known that conventional antitumor drugs fail to select
tumor tissues and this feature causes important side effects
often requiring treatment suspension. Aimed at targeting small-
molecules, including conventional chemotherapeutics, toward
AR-expressing PC cells, several compounds have been conjugated
with AR binder.

Conjugates for Targeting
Conventional Chemotherapeutics
In order to drive cisplatin (e.g., formation of platinum-DNA
adducts) against PC cells, the drug has been conjugated with
the testosterone-homolog ethisterone, 3a (Figure 2) (Huxley
et al., 2010; Sanchez-Cano et al., 2010). By using a modified
Sonogashira cross-coupling reaction, the ethisterone has been
coupled with different bromo substituted nitrogen-based
heterocycles, including pyridine, quinolone and isoquinoline,
carrying a platinum unit. Among the compounds designed,
only those containing the pyridine linker were obtained in good
amount and resulted cytotoxic for PC cells. The best derivative
of the series (3a) preferentially accumulated in AR-positive cell
lines and this finding paralleled with the improved cytotoxicity
observed in these cells in comparison with AR-negative cells
(Huxley et al., 2010).

Similarly, doxorubicin, a well-studied and potent
topoisoemarse II poison, has been considered (Cogan and Koch,
2004). The conjugate generated by Cogan and Koch contains
doxaliform, a doxorubicin-derivative obtained condensing
doxorubicin with salicylamide (2-hydroxybenzamide) and
formaldehyde, which is more cytotoxic than doxorubicin on
doxorubicin-sensitive and -resistant tumor cells. To target
doxaliform on AR-expressing cells, an alkyl-cyano nilutamide
moiety has been attached to doxaliform via a linear alkyne
cleavable tether (3b) (Figure 2). The conjugate binds AR
and, after receptor-mediated nuclear translocation, releases
doxaliform in cytotoxic amount. This behavior was observed in
AR-transfected but not in untransfected PC3 cells.

A very intriguing way to pursue for anticancer therapy is
the development of compounds that, after light activation,
selectively release nitric oxide (NO) into cancer cells (Rapozzi
et al., 2015, 2017) paved this way by designing a bi-functional
compound (3c, Figure 2) containing a dimethyl-piperazine
moiety substituted with a trifluoromehylnitrobenzene ring
(NO2-modified AR binder) coupled with a pheophorbide
α moiety, which allows the production of reactive oxygen
species, after light exposure. The compound is totally safe
in the dark and following exposure to white light both
pheophorbide α and NO donor moieties are activated.
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FIGURE 2 | Chemical structures of AR-ligand based conjugates for targeting small-molecules. The hybrid compounds containing conventional antitumor drugs

(cisplatin, 3a; doxorubicin, 3b; and pheophorbide α, 3c) are reported. The figure also shows the chemical structures of molecules that alter chromatin status (3d and

3e) and that of compounds that interfere with AR/co-activators interactions (3f and 3g).
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The molecule showed nuclear localization in CRPC and,
differently to pheophorbide α alone, it by-passes the ABCG2-
mediated efflux, thus making this compound interesting
for patients resistant to photodynamic therapy. Gaining
further insight into compound’s action mechanism, the
same research group identified the doubtful role played by
the NF-kB/YY1/RKIP pathway in mediating NO activity
of the conjugate. Specifically, NO mediates pro- or anti-
survival activity depending on concentration levels achieved
following light activation. Low NO levels activate a pro-
survival/anti-apoptotic NF-kB/YY1 pathway; conversely,
high NO release inhibits NF-kB/YY1 and, via Snail, activates
the anti-survival/pro-apoptotic RKIP leading to antitumor
activity. Thus, the two photosensitive moieties synergize and
induce cell death following conditions that produce high
NO levels.

Conjugates for Chromatin Remodeling
HDAC-containing therapy is among medical interventions
proposed for the treatment of patients suffering from cancer,
including PC (Sonnenburg and Morgans, 2018). These drugs
inhibit histone deacetylases, a class of enzymes that removes
acetyl groups from ε-N-acetyl lysines on histone proteins
allowing chromatin decondensation. This activity impacts on
gene expression, tumor growth and drug resistance (Graça
et al., 2016). Although very effective in preclinical models,
these drugs did not improve survival of patients affected
by solid tumors, likely dependent, at least in part, on their
reduced cellular accumulation (Gryder et al., 2013). Aimed
at implementing drug uptake in PC cells, Gryder and co-
workers designed a hybrid HDAC inhibitors equipped with
a non-steroidal (cyano-nilutamide) AR binder. Specifically, an
aryl-alkyne or alkyl-alkyne cyano-nilutamide moiety has been
conjugated, via a triazole alkyl linker, with the zinc chelating
hydroxamate residue. Compared with alkyl-alkyne derivatives,
compounds belonging to the aryl-alkyne series resulted more
active. Derivative 3d (Figure 2) showed the best interaction with
AR and maintained HDAC activity. Cyano-nilutamide moiety
increased nuclear localization of HDAC inhibitory activity in
androgen-dependent LNCaP cells and in less extent in castration-
resistant DU145 cells.

The status of the chromatin is also controlled by histone
acetyltransferase (HAT) enzymes. These enzymes catalyze
acetylation of histones and produce chromatin decondensation
allowing changes in gene expression and protein levels that
in turn impact on cellular response to antitumor drugs. By
increasingHAT levels, genistein increases p21 and p16 expression
and favors cell-cycle arrest and apoptosis. Aimed at directing
genistein action against AR-expressing PC cells, bi-functional
agent containing a non-steroidal moiety linked to genistein
(hydantoin-derived antiandrogen-genistein) has been recently
designed (3e), Figure 2 (George et al., 2018). The compound
is more active than genistein and enzalutamide administered
alone in inducing S-phase cell-cycle arrest and in reducing cell
proliferation of LNCaP, DU145, and CW22Rv1 cells. The hybrid
molecule also down-regulates the expression of AR through the
inhibition of HDAC6-Hsp90 co-chaperone function.

Conjugates That Impair AR/Co-activators
Interaction
The interaction of AR with co-activators critically regulates
receptor functions and compounds that interfere with this
binding impact on tumor growth. In this regard, two hybrid
derivatives containing a AR binder and endowed with AR/co-
activator interfering action (YZ03, 3f, and MPC6, 3g) have
been reported (Wang et al., 2016b; Zhang et al., 2016). The
acetyl-transfer activity of thiosalycilamides has been directed
toward AR by conjugating tolfenamic acid (AR binder) with
the thiosalycilamide (Figure 2) (Zhang et al., 2016). YZ03
increases the acetylation of Lys720 of AR in CW22Rv1 cells.
This amino acid is critical for the binding of AR to co-activators
and its acetylation produces a steric hindrance that negatively
impacts on AR/co-activators binding. No data are available
about the cytotoxic activity of YZ03. Another molecule that
interferes with AR/co-activator interaction is the multivalent
peptoid conjugate MPC6 (3g). This compound consists of
two ethisterone moieties (AR binder) linked each other via
a peptoid oligomer (Figure 2) (Wang et al., 2016b). The
interaction of MPC6 with AR blocks, by steric clash, the
binding of the receptor with co-activators and reduces the
expression of both wt and AR-V7 forms of AR. The compound
reduces the proliferation in vitro of AR-expressing PC cells
(LNCaP), including those resistant to bicalutamide (LNCaP-
C4-2) and enzalutamide (LNCaP-abl; LNCaP-95). Noteworthy,
MPC6 showed favorable pharmacologic profile and antitumor
potency in vivo against enzaltamide-resistant LNCaP-abl
tumor xenografts.

CONCLUSIONS

AR is an interesting player to engineer receptor-directed
conjugates for targeting PC. Directed by AR-ligand, these
compounds produce selective AR down-regulation and/or favor
nuclear accumulation of chemotherapeutics. These conjugates
are difficult to design since they have to challenge several issues
to maintain the “druggability,” including (i) the proneness of
the two pharmacophores to tolerate chemical modifications
without affecting the interaction with the targets; (ii) the physical-
chemical properties (size and solubility) of the two moieties,
which are fundamental for compound formulation; and (iii)
linker length and flexibility, which provide optimal distance
between the two pharmacophores and allow them to adapt on
the targets. In this regard, ligand-based and/or structure-based
computational approaches are very useful for the design and
optimization of hybrid molecules.

Some of the conjugates reported (e.g., 1b, 1c, 1d, 1e, 2b,
2c, 3e, and 3g) have been tested on CRPC and proved efficacy
in overcoming drug resistance developed against AR-targeted
drugs. Compounds that function by reducing the levels of the
receptor are in principle very interesting for patients resistant
to ADT due to AR mutations. Indeed, these molecules activate
proteasome-mediated degradation of both wt and AR mutant
variants. In this context, SARD (1b, 1c, 1d, and 1e) and PROTAC
(2b and 2c) proved efficacy on CRPC.
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It is important to underline that the synthesis of hybrid
molecules may result in high molecular weight conjugates
(>1,000 Da). According to Lipinski’s rule of five (Lipinski et al.,
2001), this feature negatively impacts on drug-like property
of molecules. In this regard, it is noteworthy that among the
compounds described, only 1b and 1d (e.g., low molecular
weight compounds) progressed beyond the biochemical/cellular
characterization and the clinical setting. Unfortunately, the
results of clinical trials conducted so far are not encouraging
because of important side effects experienced by patients.

In conclusion, although the compounds here reported may
be considered a sort of next-generation AR-targeted drugs, most
of them represent proof of concept supporting the feasibility of

a pharmacological strategy rapidly evolving and arousing great
interest. The benefits for patients suffering from PC have yet to
be proven.
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