155 research outputs found
Retention of ductility in high-strength steels
To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature
Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel
Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure. <br /
Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material
We present a survey of the early evolution of 12 Type IIn supernovae (SNe IIn) at ultraviolet and visible light wavelengths. We use this survey to constrain the geometry of the circumstellar material (CSM) surrounding SN IIn explosions, which may shed light on their progenitor diversity. In order to distinguish between aspherical and spherical CSM, we estimate the blackbody radius temporal evolution of the SNe IIn of our sample, following the method introduced by Soumagnac et al. We find that higher-luminosity objects tend to show evidence for aspherical CSM. Depending on whether this correlation is due to physical reasons or to some selection bias, we derive a lower limit between 35% and 66% for the fraction of SNe IIn showing evidence for aspherical CSM. This result suggests that asphericity of the CSM surrounding SNe IIn is commonâconsistent with data from resolved images of stars undergoing considerable mass loss. It should be taken into account for more realistic modeling of these events
Low Alloy Steels That Minimize the Hydrogen-Carbide Reaction. Final Technical Report, October 1, 1978-September 30, 1979. Part I
This report presents results obtained during the first year of a research program to investigate important metallurgical parameters that control the reactions of hydrogen with carbides in steels. Preliminary work included a detailed literature review of th phenomenon of decarburization and methane bubble formation in steels and a suitable experimental technique for investigating hydrogen attack in laboratory conditions was established. Detailed microstructural-mechanical property evaluations were carried out on two series of alloys; the first was based on a plain carbon steel to which binary and ternary alloy additions were made to vary the carbide structure and morphology and assess these effects on the observed hydrogen attack resistance. The second group of steels consisted of commercial Mn-Mo-Ni (A 533 B) and Cr-Mo (A 542 type) steels and their alloy modifications, with a view towards developing steels with improved hydrogen attack resistance
- âŠ