133 research outputs found
Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors.
Plants, similarly to animals, form polarized axes during embryogenesis on which cell differentiation and organ patterning programs are orchestrated. During Arabidopsis embryogenesis, establishment of the shoot and root stem cell populations occurs at opposite ends of an apical-basal axis. Recent work has identified the PLETHORA (PLT) genes as master regulators of basal/root fate, whereas the master regulators of apical/shoot fate have remained elusive. Here we show that the PLT1 and PLT2 genes are direct targets of the transcriptional co-repressor TOPLESS (TPL) and that PLT1/2 are necessary for the homeotic conversion of shoots to roots in tpl-1 mutants. Using tpl-1 as a genetic tool, we identify the CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors as master regulators of embryonic apical fate, and show they are sufficient to drive the conversion of the embryonic root pole into a second shoot pole. Furthermore, genetic and misexpression studies show an antagonistic relationship between the PLT and HD-ZIP III genes in specifying the root and shoot poles
TOPLESS Regulates Apical Embryonic Fate in Arabidopsis
The embryos of seed plants develop with an apical shoot pole and a basal root pole. In Arabidopsis, the topless-1 (tpl-1) mutation transforms the shoot pole into a second root pole. Here, we show that TPL resembles known transcriptional corepressors and that tpl-1 acts as a dominant negative mutation for multiple TPL-related proteins. Mutations in the putative coactivator HISTONE ACETYLTRANSFERASE GNAT SUPERFAMILY1 suppress the tpl-1 phenotype. Mutations in HISTONE DEACETYLASE19, a putative corepressor, increase the penetrance of tpl-1 and display similar apical defects. These data point to a transcriptional repression mechanism that prevents root formation in the shoot pole during Arabidopsis embryogenesis
The GALEX View of "Boyajian's Star" (KIC 8462852)
The enigmatic star KIC 8462852, informally known as "Boyajian's Star", has
exhibited unexplained variability from both short timescale (days) dimming
events, and years-long fading in the Kepler mission. No single physical
mechanism has successfully explained these observations to date. Here we
investigate the ultraviolet variability of KIC 8462852 on a range of timescales
using data from the GALEX mission that occurred contemporaneously with the
Kepler mission. The wide wavelength baseline between the Kepler and GALEX data
provides a unique constraint on the nature of the variability. Using 1600
seconds of photon-counting data from four GALEX visits spread over 70 days in
2011, we find no coherent NUV variability in the system on 10-100 second or
months timescales. Comparing the integrated flux from these 2011 visits to the
2012 NUV flux published in the GALEX-CAUSE Kepler survey, we find a 3% decrease
in brightness for KIC 8462852. We find this level of variability is
significant, but not necessarily unusual for stars of similar spectral type in
the GALEX data. This decrease coincides with the secular optical fading
reported by Montet & Simon (2016). We find the multi-wavelength variability is
somewhat inconsistent with typical interstellar dust absorption, but instead
favors a R = 5.0 0.9 reddening law potentially from circumstellar
dust.Comment: 8 pages, 4 figures, ApJ Accepte
Tailoring on-surface molecular reactions and assembly through hydrogen-modified synthesis: From triarylamine monomer to 2D covalent organic framework
Relative to conventional wet-chemical synthesis techniques, on-surface
synthesis of organic networks in ultrahigh vacuum has few control parameters.
The molecular deposition rate and substrate temperature are typically the only
synthesis variables to be adjusted dynamically. Here we demonstrate that
reducing conditions in the vacuum environment can be created and controlled
without dedicated sources -- relying only on backfilled hydrogen gas and ion
gauge filaments -- and can dramatically influence the Ullmann-like on-surface
reaction used for synthesizing two-dimensional covalent organic frameworks (2D
COFs). Using tribromo dimethylmethylene-bridged triphenylamine ((Br)DTPA)
as monomer precursors, we find that atomic hydrogen blocks aryl-aryl bond
formation. Control of the relative monomer and hydrogen fluxes is used to
produce large islands of self-assembled monomers, dimers, or macrocycle
hexamers. On-surface synthesis of these oligomers, from a single precursor,
circumvents potential challenges with protracted wet-chemical synthesis or low
precursor volatility for large molecules. Using scanning tunneling microscopy
and spectroscopy (STM/STS), we show that changes in the electronic states
through this oligomer sequence provide an insightful view of the 2D-COF
(synthesized in the absence of atomic hydrogen) as the endpoint in an evolution
of electronic structures from the monomer
A Comprehensive Review of Mouse Diaphyseal Femur Fracture Models
Complications related to treatment of long bone fractures still stand as a major challenge for orthopaedic surgeons. Elucidation of the mechanisms of bone healing and development, and the subsequent alteration of these mechanisms to improve outcomes, typically requires animal models as an intermediary between in vitro and human clinical studies. Murine models are some of the most commonly used in translational research, and mouse fracture models are particularly diverse, offering a wide variety of customization with distinct benefits and limitations depending on the study. This review critically examines three common femur fracture models in the mouse, namely cortical hole, 3-point fracture (Einhorn), and segmental bone defect. We lay out the general procedure for execution of each model, evaluate the practical implications and important advantages/disadvantages of each and describe recent innovations. Furthermore, we explore the applications that each model is best adapted for in the context of the current state of murine orthopaedic research
Analysis of the effects of spaceflight and local administration of thrombopoietin to a femoral defect injury on distal skeletal sites
With increased human presence in space, bone loss and fractures will occur. Thrombopoietin (TPO) is a recently patented bone healing agent. Here, we investigated the systemic effects of TPO on mice subjected to spaceflight and sustaining a bone fracture. Forty, 9-week-old, male, C57BL/6 J were divided into 4 groups: (1) Saline+Earth; (2) TPO + Earth; (3) Saline+Flight; and (4) TPO + Flight (n = 10/group). Saline- and TPO-treated mice underwent a femoral defect surgery, and 20 mice were housed in space ("Flight") and 20 mice on Earth for approximately 4 weeks. With the exception of the calvarium and incisor, positive changes were observed in TPO-treated, spaceflight bones, suggesting TPO may improve osteogenesis in the absence of mechanical loading. Thus, TPO, may serve as a new bone healing agent, and may also improve some skeletal properties of astronauts, which might be extrapolated for patients on Earth with restraint mobilization and/or are incapable of bearing weight on their bones
From Default Mode Network to the Basal Configuration: Sex Differences in the Resting-State Brain Connectivity as a Function of Age and Their Clinical Correlates
Connectomics is a framework that models brain structure and function interconnectivity as a network, rather than narrowly focusing on select regions-of-interest. MRI-derived connectomes can be structural, usually based on diffusion-weighted MR imaging, or functional, usually formed by examining fMRI blood-oxygen-level-dependent (BOLD) signal correlations. Recently, we developed a novel method for assessing the hierarchical modularity of functional brain networks—the probability associated community estimation (PACE). PACE uniquely permits a dual formulation, thus yielding equivalent connectome modular structure regardless of whether positive or negative edges are considered. This method was rigorously validated using the 1,000 functional connectomes project data set (F1000, RRID:SCR_005361) (1) and the Human Connectome Project (HCP, RRID:SCR_006942) (2, 3) and we reported novel sex differences in resting-state connectivity not previously reported. (4) This study further examines sex differences in regard to hierarchical modularity as a function of age and clinical correlates, with findings supporting a basal configuration framework as a more nuanced and dynamic way of conceptualizing the resting-state connectome that is modulated by both age and sex. Our results showed that differences in connectivity between men and women in the 22–25 age range were not significantly different. However, these same non-significant differences attained significance in both the 26–30 age group (p = 0.003) and the 31–35 age group (p < 0.001). At the most global level, areas of diverging sex difference include parts of the prefrontal cortex and the temporal lobe, amygdala, hippocampus, inferior parietal lobule, posterior cingulate, and precuneus. Further, we identified statistically different self-reported summary scores of inattention, hyperactivity, and anxiety problems between men and women. These self-reports additionally divergently interact with age and the basal configuration between sexes
Recommended from our members
Bacterial Hypoxic Responses Revealed as Critical Determinants of the Host-Pathogen Outcome by TnSeq Analysis of Staphylococcus aureus Invasive Infection
Staphylococcus aureus is capable of infecting nearly every organ in the human body. In order to infiltrate and thrive in such diverse host tissues, staphylococci must possess remarkable flexibility in both metabolic and virulence programs. To investigate the genetic requirements for bacterial survival during invasive infection, we performed a transposon sequencing (TnSeq) analysis of S. aureus during experimental osteomyelitis. TnSeq identified 65 genes essential for staphylococcal survival in infected bone and an additional 148 mutants with compromised fitness in vivo. Among the loci essential for in vivo survival was SrrAB, a staphylococcal two-component system previously reported to coordinate hypoxic and nitrosative stress responses in vitro. Healthy bone is intrinsically hypoxic, and intravital oxygen monitoring revealed further decreases in skeletal oxygen concentrations upon S. aureus infection. The fitness of an srrAB mutant during osteomyelitis was significantly increased by depletion of neutrophils, suggesting that neutrophils impose hypoxic and/or nitrosative stresses on invading bacteria. To more globally evaluate staphylococcal responses to changing oxygenation, we examined quorum sensing and virulence factor production in staphylococci grown under aerobic or hypoxic conditions. Hypoxic growth resulted in a profound increase in quorum sensing-dependent toxin production, and a concomitant increase in cytotoxicity toward mammalian cells. Moreover, aerobic growth limited quorum sensing and cytotoxicity in an SrrAB-dependent manner, suggesting a mechanism by which S. aureus modulates quorum sensing and toxin production in response to environmental oxygenation. Collectively, our results demonstrate that bacterial hypoxic responses are key determinants of the staphylococcal-host interaction
The Imaging X-ray Polarimetry Explorer (IXPE): Technical Overview
The Imaging X-ray Polarimetry Explorer (IXPE) will expand the information space for study of cosmic sources, by adding linear polarization to the properties (time, energy, and position) observed in x-ray astronomy. Selected in 2017 January as a NASA Astrophysics Small Explorer (SMEX) mission, IXPE will be launched into an equatorial orbit in 2021. The IXPE mission will provide scientifically meaningful measurements of the x-ray polarization of a few dozen sources in the 2-8 keV band, including polarization maps of several x-ray-bright extended sources and phase-resolved polarimetry of many bright pulsating x-ray sources
- …