1,227 research outputs found

    Control-Oriented Nonlinear Modeling of Polyvinyl Chloride (Pvc) Gel Actuators

    Get PDF
    Polyvinyl chloride (PVC) gel-based actuators are a new class of soft, electroactive polymer actuators with several attractive properties, including low cost, large compliance, large strain output, high-stress output, fast response, and stability against thermal influence. While PVC gel actuators are quickly gaining attention, they remain largely unexplored despite their great potential in a long list of applications compared with many other smart material actuators. In particular, little work has been reported on modeling nonlinear dynamics of PVC actuators. In this work a nonlinear, control-oriented Hammerstein model, with a polynomial nonlinearity preceding a transfer function, is proposed to capture the amplitude-dependent frequency responses of PVC gel actuators. A systematic procedure for identifying the model parameters is developed. The efficacy of the modeling approach is demonstrated with experimental voltage-displacement data collected from a PVC gel actuator prototype, where the model is able to predict the input amplitude-dependent dynamic response

    Comparison of the inhibition of an OCT3 transporter inhibitor, Nilotinib, on Doxorubicin’s effects on cardiac and cancer cell lines

    Get PDF
    Introduction Doxorubicin (DOX)-induced cardiotoxicity remains a significant barrier limiting its clinical application due to a lack of effective resolution. Targeting how DOX enters cardiac and cancer cells is a promising new strategy. Research suggests that an OCT3 transporter significantly contributes to DOX entry into the heart tissue. By contrast, it expresses much lower on breast cancer cell lines. Moreover, Nilotinib (NIB) can suppress OCT3 transporter function by 80%. Therefore, exploring the impact of NIB on the DOX’s effects on cardiac and cancer cell lines by altering DOX intracellular accumulation is intriguing. Objective First, we would establish a dose-response curve of DOX and NIB alone to assess their individual effects on cell viability. Secondly, we would record the impact of NIB on DOX entry within cardiac myoblasts (H9C2) and breast cancer cells (MCF7) through OCT3 transporter antagonism to assess if NIB can exert cardioprotective effects while maintaining DOX’s anticancer effect. Methods H9C2 myoblast and MCF7 breast cancer cells were seeded in 96-well black plates. Cells were treated with only DOX or NIB to establish a dose-response curve. Moreover, NIB was combined with DOX as a cotreatment or pretreatment regimen to evaluate the impacts of NIB on DOX’s effect. Titrated combinations of NIB (10 nM, 50 nM, 100 nM, 500 nM, 1 µM, 2 µM, 5 µM) and DOX (10 µM and 40µM) were used. Bioassays were conducted after cells were treated for 24 hours. Intracellular DOX fluorescence intensity was measured at 488/590 nm by fluoroskan. Subsequently, cell viability was detected by measuring absorbance at 450 nm after adding a cell counting reagent. The data were expressed as a ratio relative to untreated or the DOX control. Results DOX dose-dependently reduced viability of H9c2 and MCF7 cells. H9c2 cell showed significantly lower cell viability at 1 µM (0.86±0.04, n=10, p\u3c0.05) and 40 µM (0.40±0.02, n=10, p\u3c0.05) when compared to those of MCF7 cells (1.07±0.05 and 0.68±0.08 for 1 µM and 40 µM, respectively, n=7). By contrast, NIB (10 nM-2 µM) only slightly increased cell viability to 1.13±0.05 (n=11) in H9c2 cells and to 1.16±0.13 (n=7) in MCF7 cells, respectively, when compared to untreated control. The highest tested dose of NIB (5 µM) showed a similar reduction of cell viability to 0.83±0.07 in H9c2 cells and to 0.81±0.10 in MCF7 cells. Furthermore, NIB cotreatment mitigated DOX-induced damages in H9c2 by increasing cell viability to 1.28±0.07 (n=5) and 1.26±0.11 (n=7) when compared to the DOX controls (10 µM and 40µM), respectively. Interestingly, NIB cotreatment enhanced DOX’s anti-cancer effects in by decreasing MCF7 cell viability to 0.66±0.10 (n=7) and 0.70±0.09 (n=6) when compared to the DOX controls (10 µM and 40µM), respectively. The intracellular DOX fluorescence data and NIB pretreatment results are still being gathered. Conclusion DOX, not NIB, dose-dependently induced H9c2 and MCF7 cell death. Moreover, DOX-induced damage was more potent in H9c2 cells than in MCF7 cells. NIB cotreatment mildly protected H9c2 cells against DOX, whereas it increased DOX’s anti-cancer effects in MCF7 cells

    TRASER - Total Reflection Amplification of Spontaneous Emission of Radiation

    Get PDF
    Background and Objective: Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single ‘tunable ’ device. Study Design/Material and Methods: This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER. Results: Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate. Conclusion: Considering the characteristics and parameters of Traser technology, it is possible that this one device woul

    Risk Factors and Effect of Acute Kidney Injury on Outcomes Following Total Hip and Knee Arthroplasty

    Get PDF
    Introduction: Development of acute kidney injury (AKI) following primary total joint arthroplasty (TJA) is a potentially avoidable complication associated with negative outcomes including increased length of stay and mortality. The purpose of this study was to determine the effect of AKI on short-term outcomes and identify risk factors for developing AKI following either total hip or total knee arthroplasty. It was hypothesized that AKI has significant adverse effects on short-term outcomes metrics. Methods: Patients undergoing primary TJA at a single hospital from 2005 to 2017 were identified and patient demographics, comorbidities, short-term outcomes, and perioperative laboratory results were recorded. AKI was defined as an increase in creatinine levels by 50% or 0.3 points. Demographics, comorbidities, and outcomes were compared between patients who developed AKI and those who did not. Multivariate regressions identified the independent effect of AKI on outcomes. Results: In total, 814 (3.9%) of 20,800 patients developed AKI. AKI independently increased length of stay by 0.26 days (P \u3c .001), in-hospital complication risk (odds ratio = 1.73,P \u3c .001), and discharge to facility risk (odds ratio = 1.26, P = .012). Potentially modifiable variables including body mass index, perioperative hemoglobin levels, surgery duration, and operative fluids administered were predicative of AKI. Discussion: AKI following TJA has significant adverse effects on outcomes including length of stay, discharge, and complications. Although many identified risk factors are nonmodifiable, maintaining adequate renal perfusion through optimizing preoperative hemoglobin, sufficient fluid resuscitation, and reducing blood loss may aid in mitigating the risk of developing AKI

    An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface.

    Get PDF
    Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization

    GATA4 controls regionalization of tissue immunity and commensal-driven immunopathology

    Get PDF
    There is growing recognition that regionalization of bacterial colonization and immunity along the intestinal tract has an important role in health and disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. This study found that regional epithelial expression of the transcription factor GATA4 controls bacterial colonization and inflammatory tissue immunity in the proximal small intestine by regulating retinol metabolism and luminal IgA. Furthermore, in mice without jejunal GATA4 expression, the commensal segmented filamentous bacteria promoted pathogenic inflammatory immune responses that disrupted barrier function and increased mortality upon Citrobacter rodentium infection. In celiac disease patients, low GATA4 expression was associated with metabolic alterations, mucosal Actinobacillus, and increased IL-17 immunity. Taken together, these results reveal broad impacts of GATA4-regulated intestinal regionalization on bacterial colonization and tissue immunity, highlighting an elaborate interdependence of intestinal metabolism, immunity, and microbiota in homeostasis and disease.</p
    • …
    corecore