343 research outputs found

    Beam-Spin Asymmetry Σ for Σ⁻ Hyperon Photoproduction off the Neutron

    Get PDF
    We report a new measurement of the beam-spin asymmetry, ÎŁ, for the →n → K+Σ− reaction using quasi-free neutrons in a liquid-deuterium target. The new dataset includes data at previously unmeasured photon energy and angular ranges, thereby providing new constraints on partial wave analyses used to extract properties of the excited nucleon states. The experimental data were obtained using the CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall B of the Thomas Jefferson National Accelerator Facility (JLab). The CLAS detector measured reaction products from a liquid-deuterium target produced by an energy-tagged, linearly polarised photon beam with energies in the range 1.1 to 2.3 GeV. Predictions from an isobar model indicate strong sensitivity to N(1720)3/2+, Δ(1900)1/2−, and N(1895)1/2−, which corroborates results from a recent combined analysis of all KÎŁ channels. When our data are incorporated in the fits of partial-wave analyses, one observes significant changes in -n couplings of resonances which have small branching ratios to the πN channel

    First Measurement of Timeline Compton Scattering

    Get PDF
    We present the first measurement of the timelike Compton scattering process, p →pâ€Č∗(∗→e+e−), obtained with the CLAS12 detector at Jefferson Lab. The photon beam polarization and the decay lepton angular asymmetries are reported in the range of timelike photon virtualities 2.25 \u3c Q2 \u3c 9  GeV2, squared momentum transferred 0.1 \u3c −t \u3c 0.8  GeV2, and average total center-of-mass energy squared s = 14.5  GeV2 . The photon beam polarization asymmetry, similar to the beam-spin asymmetry in deep virtual Compton scattering, is sensitive to the imaginary part of the Compton form factors and provides a way to test the universality of the generalized parton distributions. The angular asymmetry of the decay leptons accesses the real part of the Compton form factors and thus the D-term in the parametrization of the generalized parton distributions

    Measurement of Charged-Pion Production in Deep-Inelastic Scattering Off Nuclei with the CLAS Detector

    Get PDF
    Background: Energetic quarks in nuclear deep-inelastic scattering propagate through the nuclear medium. Processes that are believed to occur inside nuclei include quark energy loss through medium-stimulated gluon bremsstrahlung and intranuclear interactions of forming hadrons. More data are required to gain a more complete understanding of these effects. Purpose: To test the theoretical models of parton transport and hadron formation, we compared their predictions for the nuclear and kinematic dependence of pion production in nuclei. Methods: We have measured charged-pion production in semi-inclusive deep-inelastic scattering off D, C, Fe, and Pb using the CLAS detector and the CEBAF 5.014-GeV electron beam. We report results on the nuclear-to-deuterium multiplicity ratio for π+ and π− as a function of energy transfer, four-momentum transfer, and pion energy fraction or transverse momentum—the first three-dimensional study of its kind. Results: The π+ multiplicity ratio is found to depend strongly on the pion fractional energy z and reaches minimum values of 0.67 ± 0.03, 0.43 ± 0.02, and 0.27 ± 0.01 for the C, Fe, and Pb targets, respectively. The z dependencies of the multiplicity ratios for π+ and π− are equal within uncertainties for C and Fe targets but show differences at the level of 10% for the Pb-target data. The results are qualitatively described by the GiBUU transport model, as well as with a model based on hadron absorption, but are in tension with calculations based on nuclear fragmentation functions. Conclusions: These precise results will strongly constrain the kinematic and flavor dependence of nuclear effects in hadron production, probing an unexplored kinematic region. They will help to reveal how the nucleus reacts to a fast quark, thereby shedding light on its color structure and transport properties and on the mechanisms of the hadronization process

    Cannabinoid-mediated short-term plasticity in hippocampus

    Get PDF
    Endocannabinoids modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell's activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell's firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell's activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity

    Putative antimicrobial peptides within bacterial proteomes affect bacterial predominance: a network analysis perspective

    Get PDF
    The predominance of bacterial taxa in the gut, was examined in view of the putative antimicrobial peptide sequences (AMPs) within their proteomes. The working assumption was that compatible bacteria would share homology and thus immunity to their putative AMPs, while competing taxa would have dissimilarities in their proteome-hidden AMPs. A network–based method (“Bacterial Wars”) was developed to handle sequence similarities of predicted AMPs among UniProt-derived protein sequences from different bacterial taxa, while a resulting parameter (“Die” score) suggested which taxa would prevail in a defined microbiome. T he working hypothesis was examined by correlating the calculated Die scores, to the abundance of bacterial taxa from gut microbiomes from different states of health and disease. Eleven publicly available 16S rRNA datasets and a dataset from a full shotgun metagenomics served for the analysis. The overall conclusion was that AMPs encrypted within bacterial proteomes affected the predominance of bacterial taxa in chemospheres

    Photoproduction of K+K− meson pairs on the proton

    Get PDF
    The exclusive reaction Îłp→pK+K− was studied in the photon energy range 3.0–3.8  GeV and momentum transfer range 0.6<−t<1.3  GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was approximately 20  pb−1. The reaction was isolated by detecting the K+ and the proton in CLAS, and reconstructing the K− via the missing-mass technique. Moments of the dikaon decay angular distributions were extracted from the experimental data. Besides the dominant contribution of the ϕ meson in the P wave, evidence for S−P interference was found. The differential production cross sections dσ/dt for individual waves in the mass range of the ϕ resonance were extracted and compared to predictions of a Regge-inspired model. This is the first time the t-dependent cross section of the S-wave contribution to the elastic K+K− photoproduction has been measured

    Outcome of Total Parathyroidectomy and Autotransplantation as Treatment of Secondary and Tertiary Hyperparathyroidism in Children and Adults

    Get PDF
    Contains fulltext : 89902.pdf (publisher's version ) (Closed access)BACKGROUND: Treatment safety and effectiveness of total parathyroidectomy and autotransplantation for secondary and tertiary hyperparathyroidism have been extensively proven in adults; the evidence for children, however, is scarce. Children and adolescents cannot simply be seen as young adults in the case of chronic kidney disease and hyperparathyroidism. The aim of this retrospective study was therefore, to evaluate whether parathyroidectomy with forearm autograft is as effective and safe in children and adolescents as in adults. METHODS: A group of 64 adults and 8 children and adolescents treated for secondary or tertiary hyperparathyroidism were retrieved from our database. The outcomes were compared on patient demographics, operation results, and blood parameters consisting of parathyroid hormone (PTH) and calcium levels. Our results were compared with all currently available articles on parathyroidectomy in children with secondary or tertiary hyperparathyroidism (n = 11). RESULTS: For adults, preoperative mean serum calcium was 2.67 +/- 0.29 mmol/l and mean parathyroid hormone (PTH) level was 120 +/- 86 pmol/l. For children, preoperative mean serum calcium was 2.62 +/- 0.20 mmol/l and mean parathyroid hormone (PTH) level was 80 +/- 38 pmol/l. Postoperative calcium and parathyroid hormone levels for adults dropped to 2.39 +/- 0.23 mmol/l and 30 +/- 53 pmol/l, respectively. Postoperative calcium and parathyroid hormone levels for children dropped to 2.41 +/- 0.16 mmol/l and 26 +/- 33 pmol/l, respectively. The effectiveness of parathyroidectomy with autotransplantation was 75% in children and 72% in adults. Thus, effectiveness did not differ significantly between children and adults. CONCLUSIONS: Combining the results of our own study with a literature review on pediatric parathyroidectomy, we conclude that parathyroidectomy and forearm autograft is as effective a treatment for secondary and tertiary hyperparathyroidism in children and adolescents as it is in adults.1 mei 201

    Beam-target helicity asymmetry for γ→n→→π−p in the N*resonance region

    Get PDF
    We report the first beam-target double-polarization asymmetries in the Îł ĂŸ nĂ°pÞ → π− ĂŸ pĂ°pÞ reaction spanning the nucleon resonance region from invariant mass W ÂŒ 1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses and have led to significant revisions for several ÎłnN* resonance photocouplings

    Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π + electroproduction reaction Îł ∗ p → n π + . The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 < W < 3 GeV and 1 < Q 2 < 6 GeV 2 . Results were obtained for about 6000 bins in W ,   Q 2 ,   cos ( Ξ ∗ ) , and ϕ ∗ . Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W < 1.6 GeV, but very large differences are seen at higher values of W . A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q 2 , for resonances with masses as high as 2.4 GeV
    • 

    corecore