69 research outputs found

    The use of India ink in tissue-simulating phantoms

    Get PDF
    The optical properties of India ink, an absorber often used in preparation of tissue simulating phantoms, have been investigated at visible and near infrared wavelengths. The extinction coefficient has been obtained from measurements of collimated transmittance and from spectrophotometric measurements, the absorption coefficient from multidistance measurements of fluence rate in a diffusive infinite medium with small concentrations of added ink. Measurements have been carried out on samples of India ink from five different brands, and for some brands also from different batches. As also reported in previously published papers the results we have obtained showed large inter-brand and inter-batch variations for both the absorption and the extinction coefficient. On the contrary, our results showed small variations for the ratio between the absorption and the extinction coefficient. The albedo is therefore similar for all samples: The values averaged over all samples investigated were 0.161, 0.115, and 0.115 at λ = 632.8, 751, and 833 nm respectively, with maximum deviations of 0.044, 0.019, and 0.035. These results indicate that, using the values we have obtained for the albedo, it should be possible to obtain with uncertainty smaller than about 4% the absorption coefficient of a sample of unknown ink from simple measurements of extinction coefficient. A similar accuracy is not easily obtained with the complicated procedures necessary for measurements of absorption coefficient

    Accurate near-threshold model for ultracold KRb dimers from interisotope Feshbach spectroscopy

    Full text link
    We investigate magnetic Feshbach resonances in two different ultracold K-Rb mixtures. Information on the K(39)-Rb(87) isotopic pair is combined with novel and pre-existing observations of resonance patterns for K(40)-Rb(87). Interisotope resonance spectroscopy improves significantly our near-threshold model for scattering and bound-state calculations. Our analysis determines the number of bound states in singlet/triplet potentials and establishes precisely near threshold parameters for all K-Rb pairs of interest for experiments with both atoms and molecules. In addition, the model verifies the validity of the Born-Oppenheimer approximation at the present level of accuracy.Comment: 9 pages, 7 figure

    Feshbach resonances in ultracold K(39)

    Full text link
    We discover several magnetic Feshbach resonances in collisions of ultracold K(39) atoms, by studying atom losses and molecule formation. Accurate determination of the magnetic-field resonance locations allows us to optimize a quantum collision model for potassium isotopes. We employ the model to predict the magnetic-field dependence of scattering lengths and of near-threshold molecular levels. Our findings will be useful to plan future experiments on ultracold potassium atoms and molecules.Comment: 7 pages, 6 figure

    Analytical calculation of the mean time spent by photons inside an absorptive inclusion embedded in a highly scattering medium

    Get PDF
    The mean time spent by photons inside a nonlocalized optically abnormal embedded inclusion has been derived analytically. The accuracy of the results has been tested against Monte Carlo and experimental data. We show that for quantification of the absorption coefficient of absorptive inclusions, a corrective factor that takes into account the size of the inclusion is needed. This finding suggests that perturbation methods derived for very small inclusions which are used in inverse algorithms require a corrective factor to adequately quantify the differential absorption coefficient of nonlocalized targets embedded in optically turbid media

    Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers

    Get PDF
    In the present work, we investigated the scattering and spectrally resolved absorption properties of nanofluids consisting in aqueous and glycol suspensions of single-wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption with respect to the pure base fluids. Scattered light was found to be not more than about 5% with respect to the total attenuation of light. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device

    Assessment of an in situ temporal calibration method for time-resolved optical tomography

    Get PDF
    A 32-channel time-resolved optical imaging device is de- veloped at University College London to produce functional images of the neonatal brain and the female breast. Reconstruction of images using time-resolved measurements of transmitted light requires careful calibration of the temporal characteristics of the measurement system. Since they can often vary over a period of time, it is desirable to evaluate these characteristics immediately after, or prior to, the acqui- sition of image data. A calibration technique is investigated that is based on the measurement of light back-reflected from the surface of the object being imaged. This is facilitated by coupling each detector channel with an individual source fiber. A Monte Carlo model is em- ployed to investigate the influence of the optical properties of the object on the back-reflected signal. The results of simulations indicate that their influence may be small enough to be ignored in some cases, or could be largely accounted for by a small adjustment to the cali- brated data. The effectiveness of the method is briefly demonstrated by imaging a solid object with tissue-equivalent optical properties

    Effects of time-gated detection in diffuse optical imaging at short source-detector separation

    Get PDF
    The adoption of a short source-detector distance, combined with a time-resolved acquisition, can be advantageous in diffuse optical imaging due to the stricter spatial localization of the probing photons, provided that the strong burst of early photons is suppressed using a time-gated detection scheme. We propose a model for predicting the effect of the time-gated measurement system using a time-variant operator built on the system response acquired at different gate delays. The discrete representation of the system operator, termed Spread Matrix, can be analyzed to identify the bottlenecks of the detection system with respect to the physical problem under study. Measurements performed on tissue phantoms, using a time-gated single-photon avalanche diode and an interfiber distance of 2 mm, demonstrate that inhomogeneities down to 3 cm can be detected only if the decay constant of the detector is lower than 100 ps, while the transient opening of the gate has a less critical impact
    • …
    corecore