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In this paper, after a critical review of the literature, we present two forward solvers and a new methodology for
description of photon migration in the presence of totally absorbing inclusions embedded in diffusive media in
both time and CW domains. The first forward solver is a heuristic approach based on a higher order perturbation
theory applied to the diffusion equation (DE) [denoted eighth-order perturbation theory (EOPT)]. The second for-
ward solver [denoted eighth-order perturbation theory with the equivalence relation (EOPTER) ] is obtained by
combining the EOPT solver with the adoption of the equivalence relation (ER) [J. Biomed. Opt. 18, 066014 (2013)].
These forward solvers can possibly overcome some evident limitations of previous approaches like the theory
behind the so-called banana-shape regions or exact analytical solutions of the DE in the presence of highly or
totally absorbing inclusions. We also propose the ER to reformulate the problem of a totally absorbing inclusion
in terms of another inclusion having a finite absorption contrast and a re-scaled volume. For instance, we have
shown how this approach can indeed be used to simulate black inclusions with the Born approximation. By means
of comparisons with the results of Monte Carlo simulations, we have shown that the EOPTER solver can
model totally absorbing inclusions with an error smaller than about 10%, whereas the EOPT solver shows an
error smaller than about 20%), showing a performance largely better than that observed with solvers proposed
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previously. © 2014 Optical Society of America

OCIS codes:  (170.3660) Light propagation in tissues; (170.5280) Photon migration; (170.3880) Medical and
biological imaging; (290.7050) Turbid media; (300.1030) Absorption; (290.1990) Diffusion.
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1. INTRODUCTION

With this paper, we want to address the issue of photon
migration in the presence of highly and totally absorbing
inclusions embedded in diffusive media. The work done
can be divided into two parts: a review of the literature
and the proposal of suitable forward solvers for modeling
of the problem investigated. The theoretical results presented
in this work belong to the general framework of optical imag-
ing through highly diffusive media (e.g., biological tissues)
that is quite attractive in view of noninvasive clinical diagnos-
tics for applications like optical mammography, functional
imaging and clinical monitoring of the brain, detection of pros-
tate tumors, assessment of ostearticular diseases, monitoring
neadjuvant therapy, or photodynamic therapy, just to quote
the most relevant ones [1].

Within this framework, the availability of a forward model
to describe the effect of a totally absorbing (black) inhomo-
geneity embedded within a diffusive medium is quite relevant
in four specific aspects. First, various clinical applications
could present situations where optical inhomogeneity is far

1084-7529/14/030460-10$15.00/0

from being a small perturbation of the background properties,
like for instance, in the case of highly perfused breast tumors,
brain hemorrhages [2—4], local vessels [5], etc. A second
aspect is related to the physical information that can be
extracted from the perfectly absorbing case, such as the prob-
ability that a photon detected has passed through a certain
region of the medium [6,7] so as to derive the density of pho-
ton paths (banana-shape regions). A third aspect is linked to
the need to simulate photon propagation in phantoms with
embedded black inclusions. Recently, we have demonstrated
that realistic absorption perturbations can be mimicked accu-
rately by a small black object of a proper volume [8]. This led
to the construction of a kit of identical inhomogeneous phan-
toms based on black polyvinyl dichloride cylinders immersed
in Intralipid and ink dilutions [8]. These kits were adopted in
the nEUROPt Protocol, an interlaboratory assessment test
aimed at quantifying the performance of optical brain imagers,
and already applied to seven different instruments [9]. A final
fourth aspect is related to the proposal to grade clinical
measurements (e.g., a functional brain activation or a breast
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lesion) using equivalent black volume as a measure of the
perturbation strength [8]. As a consequence, there is the need
for a fast forward solver to be used either in an iterative fitting
procedure or to build a look-up library for the particular geom-
etry under study.

Several forward solvers have been proposed for describing
the effects of absorbing perturbations [6,7,10-14] and some of
them have also been used when the absorption coefficient
becomes extremely high [6,7,10,14]. A first application of
these solvers has been the derivation of the so-called
banana-shape regions in which the photon migration paths
are concentrated [6,7]. These models were based on the
DE that was solved by imposing a null boundary condition
for the fluence on the surface of the black inclusion [6,7].
The procedure proposed in [6] and [7] provided an
“exact” expression for the “banana-shape regions” (within
the validity of the DE) only for a limiting case of an infinitesi-
mal black sphere. In particular, expressions of the “banana-
shape regions” were provided in the infinite and semi-infinite
medium geometry for the CW case. In [10], the DE was solved
in the infinite medium geometry in frequency domain for a
spherical defect having arbitrary size and absorption contrast
with respect to the background. It is important to stress that
even though the DE can be solved exactly in the region out-
side a black defect, to the best of our knowledge, it has never
been validated in absolute terms with more rigorous solutions
provided within the radiative transfer equation (RTE). More-
over, in those regions where absorption is much higher than
scattering, the diffusion approximation is not expected to
hold. For this evident argument, it would be desired to provide
improved solutions that are able to overcome the limitations
of the existing ones. Our work is also a contribution to filling
this gap. In this work, we show the limitations of the DE to
describe photon migration in the presence of black defects
and we also propose a heuristic solver that can overcome
these limitations.

Our approach is based on the formulated equivalence
relation (ER) between realistic and totally absorbing optical
inhomogeneities [8]. The ER states the equality between
the perturbation produced by a given absorption inhomogene-
ity embedded in a diffusive medium and an equivalent black
object of proper volume [8]. Generally speaking, for a given
reduced scattering coefficient y;; of the background medium,
the ER identifies—within the set of all possible absorption
inhomogeneities—subclasses of equivalent objects producing
the same effect. Each subclass contains only one totally
absorbing spherical inclusion, but an infinite variety of ab-
sorption inhomogeneities with different combinations of the
absorption variation Ay, between inclusion and background,
volume, and shape of the inclusion. Apart from a few extreme
cases [8]—as for very low absorption perturbations quite
close to a source or a detector—the relation is general; holds
true for both time-resolved and CW approaches; and is fairly
independent of the geometry, source-detector distance, and
the location of the inhomogeneity, as well as the background
absorption coefficient (u,).

In Section 2, we critically review the basic models that have
been proposed to deal with the problem of totally absorbing
perturbations, and present our approach based on higher
order perturbative expansion and the application of the ER
introduced in [8]. Practically, we propose two forward solvers:
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a first one simply based on eighth-order perturbation theory
(EOPT) and a second one that combines EOPT with the ER
(EOPTER). Moreover, we propose the application of the ER to
any model—e.g., the Born approximation—as a way to refor-
mulate the forward problem of a totally or high-absorbing in-
clusion in terms of another one having a milder absorption
and a re-scaled volume. In Section 3, the three approaches will
be tested against Monte Carlo (MC) simulations, both for the
time-domain and the CW case, providing an overview of the
performance of the solvers. In Section 4, we provide a discus-
sion and conclusions on the work done.

2. THEORY

In this section, the main frame of the theories used to obtain
the results presented is summarized. First, we review the
theory of the banana-shape regions [6,7] and discuss how it
can be generalized to any geometry. Following an approach
similar to the banana-shape regions theory [6,7], we also
provide an exact CW solution of the DE in the semi-infinite
geometry for a non-absorbing medium, which incorporates
a black spherical defect of arbitrary size. The reason for using
a non-absorbing medium is that in the CW, the DE simplifies
into the Poisson equation and the method of images can be
used to solve the DE exactly. Second, we describe the forward
solvers presented in this paper.

A. Comparisons of Standard and Existing Theories
In the literature, we have several works dedicated to the case
of a totally absorbing inclusion embedded inside a diffusive
medium. All the theories mentioned in this section are based
on the DE. What we want to stress is that the analytical
solutions of the DE show evident lacks in their validity when
describing photon migration close to totally absorbing inclu-
sions since high values of absorption destroy the validity of
the two simplifying assumptions of the diffusion approxima-
tion (see, for instance, in [15], Eq. (3.25) for the first
assumption and Eq. (3.26) for the second assumption). In
particular, close to totally absorbing boundaries, the diffuse
intensity does not have an almost isotropic angular distribu-
tion and cannot be approximated by the first two terms of a
series expansion in spherical harmonics. Moreover, close to
black boundaries, due to the steep spatial and angular varia-
tions of the specific intensity, large values of the photon flux
and of its derivative are also expected, and the second
assumption of the diffusion approximation is likely to fail
[15]. Therefore, the accuracy of solvers based on the DE
should be questioned and compared with the exact solution
of the RTE even when the other parameters of the geometry
(like source—detector distance) and the optical properties out-
side the black defect are within the range of validity of the DE.
We start this section with the simulation of the effect of a
totally absorbing inhomogeneity for the CW case using three
already available models, which constitutes the state of the art
in the field. This comparison provides the starting point and
the motivation to this work. The three models—including
some original derivation—will be presented in detail
afterward, together with an insight into the assumptions
and implications. In Fig. 1, we show a comparison of the
results of MC simulations and of other three existing theories
for a semi-infinite medium with a black sphere located
at depth z = 15 mm, while its center varies in the range
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Fig. 1. Comparison of the probability of a photon detected to “pass”
through or “intersect” the region occupied by a black sphere of
radius 2 mm placed inside a semi-infinite medium obtained with
various solvers.

x € (-10,30) mm and y = 0 (x, y Cartesian coordinates on the
external plane of the medium at z = 0). The probability of a
photon detected to “pass” through or “intersect” the region
occupied by the black sphere is plotted versus the scanning
coordinate (x). This probability is calculated as the absolute
value of the relative change of the detected CW flux, |AJ /Jy|,
with respect to its baseline value J, (i.e., the value without the
defect). Figure 1 pertains to a medium having y; = 0.5 mm™!
and p, = 0, and the refractive indices inside and outside the
medium are 1.4 and 1, respectively. An isotropic source placed
at (0,0,1/u;) has been considered for all the solvers. The de-
tector is located at (20,0,0) mm. For the MC simulation, the
detector is a square of side 2 mm and the simulation was
run for isotropic scattering and terminated after detecting
10* photons. The fourth-order perturbation theory-based
results are obtained with Ay, = 6 mm~!, which practically
simulates a totally absorbing inclusion. The curve labeled
“DE Solution” is the exact solution of the DE obtained with
the method of images (so far, we know this solution is unpub-
lished) and was obtained with 40 image point sources. The
other two curves were obtained with the theory of the banana
regions [6,7] and with a heuristic fourth-order perturbation
theory integrated with the method of Padé approximants
[16-19]. The results clearly show the deficiencies of the
theories based on rigorous solutions of the DE when used
in the presence of totally absorbing inclusions. A better agree-
ment with MC simulations is obtained with the heuristic
theory developed by Sassaroli and co-workers [16-19]. In
what follows, we introduce the theories used in Fig. 1.

1. Banana-Shape Regions Theory

In this section, we describe the main frame of the banana-
shape regions theory [6,7]. We derive analytical formulas
for the relative CW perturbation that slightly differ (by a
normalizing factor) from those obtained in [6] and [7],
although the approach followed is basically the same. The
exact meaning of using a “small” totally absorbing object to
“probe” a diffusive light field is to provide the probability
of a photon detected to intersect (or pass through) the region
where the object is located. For simplicity, we can consider
the infinite medium geometry; however, later we will
state that the “banana-shape” regions approach can also be
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generalized to an arbitrary bounded geometry (not only
semi-infinite as the authors considered in their paper). The
method of the banana-shape regions consists of matching
the boundary conditions at the exterior of the black sphere
(i.e., on its surface), that is, ®(r,, r) = 0 for any r at the boun-
dary of the sphere (i.e., the total fluence at the surface of the
sphere is “0”). In the argument of @, the first point is always
the source point and the second is the field point, with r
position vector of the real source that is also the origin of
the reference system so that r; = 0. In order to do so, we con-
sider a negative point source (abbreviated as ns as opposed to
rs, which means “real source”) at the center of the sphere so
that ®(rs,ry +1,) = Op(rs, 1y +1,) + D, (ry, 1) (r; position
vector from the real source to the center of the totally absorb-
ing sphere; r, position vector from the center of the sphere to
its external; r; + r, position vector from the real source to the
external of the sphere). If |r;| > |r,| (which we rewrite as
r1 > 1, = a; we follow the convention that a symbol indicat-
ing a position if not a vector represents its modulus), we can
write ®(rg, 1] + 1ry) = @, (rg, 17) + @, (ry,1,) = 0. Explicitly,
we have this condition for the total fluence:

& eXP(—Hefr?'1) g exp(—pefr@) _
4zD 7 4zD a

0, @)

where S is the strength of the real source, pei = +/3pqps is
the effective attenuation coefficient, and D = 1/(3y;) is the
diffusion coefficient [15]. From Eq. (1), we can derive the
source “strength” q (which will be negative and will have
the same units as of S, i.e., number of photons/second). Once
q has been derived, we can obtain the relative perturbation at
the detector’s site ry as
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In the original paper [6], the authors used a different definition
of g [which incorporated the factor 4zD in Eq. (1)]; moreover,
when they studied the probability of a photon detected to pass
through the sphere, they considered the limiting case for a
approaching “0” of (A®/a), leading to an expression that they
called the non-normalized probability of a photon detected to
intersect the black sphere. Instead, the correct way to define
this probability by using their approach is to realize that
Eq. (2) is already the opposite of a probability and it will ap-
proach the correct solution as a approaches “0” (note that the
probability approaches “0” as the radius a approaches “0,” i.e.,
the order of infinitesimal is a):

AD
Py = . (rs,ra)| 3
0 bs

where bs stands for black sphere. We note that the reasoning
of Feng et al. [6], which used for the probability (A®/a),
already contains a wrong assumption, that is, the behavior
of the solution of the DE in the infinite medium geometry
when the source-detector distance approaches “0” [which
is a(1/r)] correctly represents the fluence in the vicinity of
the source. Instead, we know from the improved solution
provided by Graaf and Rinzema [20] that the solution when
r approaches “0” behaves as a(1/7%). This is exactly in
agreement with the RTE as when the source-detector
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distance r approaches “0,” the contribution to the fluence
is mainly made by the ballistic component, that is,
@, = exp[—(uq + us)7]/(4nr?), with u, scattering coefficient,
whereas the diffuse component of the fluence tends to “0.”
It should be noted immediately that the contribution due to
the ballistic component when 7 approaches “0” behaves as
a(1/7%). Therefore, if one repeats all the steps, then the limit
in Eq. (3) when a approaches “0” is an infinitesimal of the
order of a?. Nevertheless, we will keep the assumptions sug-
gested by the authors, to be consistent with their method and
to develop its consequences in a bounded geometry.

We conclude this brief review on the banana-shape regions
theory by noting the link between this theory and the Born
approximation. If we are using the first-order perturbation
theory (Born approximation), we cannot deal with a black
sphere, but only with “small” contrast perturbations (Agy,).
The expression that can be derived within this theory is [16]

AD

= (rs’ rd)

o, ~ = () A @

Born

where (l;) is the mean path length and can be expressed
for small volumes far enough from the source and the receiver
as [16]

_ Sy Po(rs. X)@o (1 rg)dV" | @ (rs, 1) Py (ry. ry)

(ll> (DO (rs, rd) (DO (rsa rd)

V., ®

where V is the volume of the region occupied by the black
sphere [V = (4/3)za®]. Therefore, Eq. (4) can be rewritten as
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We can see a similarity between Egs. (6) and (2) [even though
the order of infinitesimal in Eq. (6) is o® as opposed to « in
Eq. (2)]. More precisely, we have

AD A 3D 1
- s = — s —@ a . 7
o, 10| =g Wer)| L expluna) g ()
We also note that Pyg can be expressed in terms of (I;):
AD 3D (L)
P = —_— N = l — === <. 8
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In Eq. (8), ®(r;,a) is the fluence calculated at the surface of
the sphere due to a point source of unitary strength at its
center. In substance, the banana-shape regions approach is
a mean path length approach. This conclusion follows also
from the observation of this relationship:

1 eXP[—Herr|Tg=T1]]
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Without retracing the previous steps, we state that Eq. (8) can
be used to calculate the probability of a photon detected to
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intersect a certain spherical region (i.e., to be absorbed by
a black sphere located in that region) in any kind of bounded
geometry. The proof will be straightforward if one repeats all
the steps. Finally, we note that the similarity found between
the banana-shape expression and the one obtained with the
Born approximation is a direct consequence of the ER [8].

2. Exact Solution of the DE

While the banana-shape regions theory can be developed in
general for any bounded geometry and for any value of the
absorption coefficient of the medium (within the validity of
the DE), it yields the correct perturbation only for the limiting
case of a “small” spherical defect (i.e., for a defect having a
linear size much smaller than the distance between its center
and the source). Here, we are presenting the CW solution of
the DE for a non-absorbing semi-infinite medium, which does
not have this restriction and therefore, it is valid for any size of
the black sphere embedded in the medium. For a CW source
and a non-absorbing medium, the DE is

DV2®(r) = 6(r - ry). (10)

Equation (10) is valid in any field point outside the sphere. In
the infinite medium geometry, if we choose a point source
located in a particular position inside the sphere and having
a particular strength, the boundary condition of the fluence
(@ = 0 in all the points of the surface) can be met. By using
the standard solution derived in electrostatic for the potential
generated by a point charge in front of a spherical conductor
at null potential [21], we can prove that the solution is
obtained by choosing a source strength equal to a/R of the
source strength of the real source (in this case, “1”), where
a is the radius of the sphere and R the distance between
the real source and the center of the sphere. Also, the location
of the image point source inside the sphere is at distance
b = d?/R from its center. Therefore, outside the sphere, the
solution of the DE is

1 1 1
) = 1D |:|r vl (@/R) Ir— (aZ/R)ch' (5

In Eq. (11), ris the location of an arbitrary field point and the 2
axis is chosen to connect the center of the sphere and the
point source, and k is the unit vector of 2 axis. Note that from
Eq. (11) and from the expression of the fluence for the homo-
geneous medium, we can derive A®/®,, which in the limit for
a approaching “0” is coincident with Eq. (2) obtained with the
banana-shape regions theory. This result reinforces the state-
ment that both the theories considered are based on the fun-
damental parameter (I;) used in the first-order perturbation
theory, and also explains the results of Fig. 1 where the curves
obtained with the banana-shape regions theory and the DE
solution are very close to each other.

Now let us consider how to build the solution for a black
sphere in a non-absorbing semi-infinite medium using the
method of images. For handling correctly the boundary
conditions at both the surface of the black sphere and at
the boundary of the semi-infinite medium, we need an infinite
series of image sources inside the sphere and also an infinite
series of mirror images in the semi-space not occupied by the
diffusive medium. Inside the sphere, the series of image
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Fig. 2. Mirror image sources inside the semi-infinite medium.

sources will get closer to the center of the sphere (and their
strength smaller) as we increase the order of the approxima-
tion. The positions of the image sources outside the sphere are
indicated by vectors R; = («,, 2,;); also, the position of the
image sources inside the sphere are indicated by vectors
b; = (4;,2y;). Note that R; = |R;| and b; = |b;| (see Fig. 2
and Table 1). The directions of the image sources can be i
ndicated by using the unit vectors #,; and ,;. We note that
the only real source in the table is the first one and that from
the knowledge of its position, we can derive the positions
and the strengths of all the other image sources.

3. Fourth-Order Heuristic Theory Based on the DE

About the fourth-order heuristic theory proposed by Sassaroli
and co-workers [16-19], we only remind that it originated
from a solution of the higher order perturbation theory of
the DE, for which the higher order path length moments were
derived by using MC simulations in a wide range of geometries
and optical properties of interest in near-infrared spectros-
copy (NIRS) and diffuse optical tomography (DOT). The
comparison in Fig. 1 shows that although there are still dis-
crepancies with the results of MC simulations, this solution
is significantly better than the solutions purely based on
the DE. In the next section, while introducing the forward

Table 1. Positions of the Image Sources of the DE
Solution for a Semi-infinite Medium

X 2
Lyl 2r
Xy = Xp1 2y9 =2y +22¢
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Xy = (0% /Rop )y 2por = (@2 /Rop) U1
% (unit vector) Strength

1 = (Xr1,201) /[ R1 S=1

g = ()2, 212) /B2 S=-1

W1 = Xp2n+15 Zr2i+1) /Rors1 S = l_[l(gj(;i;gl)r—bo(a/RZk—L)

!

§=- n;;&?};lbo (a/Ro—y)
lodd

S=- H;:O;Zl)cfl>0(a/R2k—l)
I

S = l_[l(zc(;];;?_bo(“/ Roy.1)

Wrorye = Xpont2, Rronse) [Rokse
U1 = Qg1

Upgl = Up2p;

Sassaroli et al.

solver proposed in this paper, we will also retrace the basic
concepts of the higher order theory.

B. Improved Forward Solvers

In this section, we propose to calculate the effects of totally
absorbing objects embedded inside diffusive media by means
of a high-order perturbation theory [16-19] and the ER de-
scribed in [8]. We have started our derivation from the solver
proposed by Sassaroli and co-workers [16-19], a fourth-order
perturbation theory by use of the moments of the generalized
temporal point-spread function that was combined together
with the method of Padé approximants. The main lack of a
high-order perturbation theory when dealing with black
defects is the convergence of the series representing the
solution. The general solution presented by Sassaroli and
co-workers [16-19] is practically a Taylor expansion in terms
of the absorption variation Ay, between an inclusion and the
background medium. The description of a black defect can be
obtained by inserting for Ay, a value sufficiently high, but at
the same time, the number of terms required in the Taylor ex-
pansion increases as long as Ay, increases. In order to im-
prove this theory, we have acted in two directions: we
have doubled the number of terms of the perturbation theory
passing to an EOPT and, by using the ER, we have accounted
for the effect of the black defect by replacing it with its equiv-
alent volume with a significantly lower value of Ay,. These
two changes produce a significant improvement in terms of
the convergence of the proposed solver compared with the
previous one. In this section, we summarize the main frame
of the EOPT and recall the ER used to replace a totally absorb-
ing defect with an equivalent realistic absorbing volume.

1. Eighth-Order Perturbation Theory

In accordance with the theory described in [16-19], given
a single defect of volume V placed inside a diffusive
medium at r;, a point source of unitary strength located
at ry inside the medium, represented by the function
S8(r —rs)8(t) for the time domain and the function 6(r - ry)
for the CW domain, and a point of collection r, located at
the boundary of the medium, indifferently for the time or
CW domain, the eighth-order contrast for the flux exiting a
diffusive medium and for a single defect can be written, limit-
ing the series to the first eight terms, as [16-19]

J-Jy e~ (-)"
Ot Vo) =20 S E . a2)

n=1

with J the photon flux of the background medium (initial
state without inclusion V), J the photon flux of the perturbed
medium (final state with inclusion V), (I!) the mean path
length self-moments related to volume V, and Ay, the absorp-
tion variation of volume V with respect to the background
(initial state). We would like to stress that the mean path
length self-moments in the time and CW domains assume
different values in accordance with their proper definition,
so that they cannot be used interchangeably with the same
meaning in the two domains. For the time domain, we have
that both (/7') and contrast depend on time. The coefficients
() (rp) for the CW domain and the coefficients (I}')(r,, t) for
the time domain are the key quantities of Eq. (12) and for their
calculation, we apply the following relations [16-19]:
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n-1
() () ~ kn—1<li)(rb)< [/ @y (rj, r)dr)

kn—l

0.0 % 5 s

{[Jo (602 2) () (6. )]
® ] : @y(r;, T, r)dr} @ n>2, (13)

with V the volume of the defect, ®, and J,, the photon fluence
and the photon flux rate in the initial state, ® the convolution
integral symbol, r; the collection point at the boundary of the
medium, and r; the position vector of the defect (for spherical
regions, we choose r; at their centers); coefficients k,_; are
reported in Table 2. In the previous fourth-order theory
[17-19], we reported the coefficient up to ks, whereas here
we provide the coefficients up to k; so that eighth-order
calculations can be carried out. These coefficients have been
calculated with MC simulations that have been repeated for
several combinations of optical properties, position, and size
of the inclusion, and geometry. For more details on the stat-
istical study needed to determine average values of these
coefficients, see Ref. [17]. Only slight differences have been
observed in the coefficients by changing the refractive index
mismatch n between the medium and the external region in
the range 1-1.4. The errors affecting the determination of
these coefficients are also affecting the accuracy of the overall
forward model. We would like to stress that these coefficients
are the same for the time and CW domains. Therefore, from
the prior calculation of the mean path length (l;) spent inside
volume V| it is possible to calculate all self-moments up to the
eighth order. The value of (l;) is calculated by using the stan-
dard diffusion theory making use of the Born approximation.
We have already shown elsewhere that the DE provides with
good accuracy the information on mean path length [12].
Finally, evaluation of Eq. (13) also requires the calculation
of the integral term of the fluence rate on volume V. For evalu-
ation of this integral, we have used, for the CW case, the im-
proved DE solution for the infinite medium proposed in [20]
and, for the time domain, the solution of the RTE for the
infinite medium geometry and isotropic scattering proposed
by Paasschens [22]. The calculation of contrast C is finalized
by using the method of Padé approximants so that the left-
hand side of the Taylor expansion in Eq. (12) is approximated
with the rational function
[1 +

The method of Padé approximants is used to extend the
validity of the theory to a wider range of absorption contrasts
between defects and background. For our results, we used
M = N = 4 because only nine coefficients can be derived
from Eq. (12) (the first being 0). Coefficients a; and b; are cal-
culated by imposing that the values of Py y(Ap,) and its first

M
C ~ Pyy(Bug) = ) a(Ap,)*/

N .
bj(Auay]. (14)
k=0 7=0

J
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M + N derivatives calculated at Ay, = 0 coincide with those
of Eq. (12): for the time domain, this condition has be imposed
at each time ¢ and for the CW case, at each source-detector
distance.

2. Equivalence Relation

The second part of the forward calculation proposed in this
paper involves the use of the ER so that a small and
completely black object can give almost the same relative per-
turbation as a larger object with only moderate absorption.
We have provided (see Eq. (8) in [8]) some interpolating func-
tions that, given a black object of volume Vi, located in a
diffusive medium with reduced scattering coefficient u}, pro-
vide the volume V and the absorption variation Ay, of the
equivalent realistic inhomogeneity. With the values of Ay,
and V and the eighth-order theory described above [Egs. (12)
and (14)], it is therefore possible to evaluate the contrast pro-
duced by the black defect under investigation. The benefit of
the ER in the calculation of the relative contrast is related to
the fact that using the equivalent volume the truncated series
of Eq. (12) is exploited for smaller values of Ay, for which
better convergence properties can be obtained.

3. Forward Solvers and Methodology

The EOPT [contrast obtained with Egs. (12) and (14)] pro-
vides a forward solver that can be used for both highly or
totally absorbing inclusions. Due to the saturation effect of
an absorbing perturbation, the case of a totally absorbing
inclusion can be practically simulated with an inclusion with
a high finite contrast Ayu,. For many real cases, an inclusion
with Ay, > 5 mm™! has an effect almost equivalent to that of a
totally absorbing object. We would like to stress that in gen-
eral, the saturation value for Ay, depends on the volume of
the inclusion and decreases for larger volumes. The combina-
tion of the EOPT solver with the ER returns a second forward
solver that we denote by the acronym eighth-order perturba-
tion theory and equivalence relation (EOPTER). This solver is
specially dedicated to totally absorbing objects that, thanks to
the equivalent relation, are calculated by using the equivalent
realistic volume V (we have used V = 1000 mm?® in accor-
dance to our previous paper [8]) with the related realistic
absorption variation Ay, obtained from the interpolating for-
mulae presented in [8].

Finally, we would like to stress that the ER can be com-
bined with any kind of forward solver for calculation of totally
absorbing inclusions. As an example, we consider the well-
known Born approximation combined with the ER. This
solver will be denoted as Born approximation and equivalence
relation (BAER).

At last, we list the main sources of approximation of the
proposed forward solvers. First, we mention the intrinsic
approximations related to the truncated series of Eq. (12)
and the approximated values provided for (I) affecting the
EOPT and EOPTER solvers. Second, about the proposed

Table 2. Coefficients k, and their Standard Deviations Calculated with MC Simulations by Average of
Several Combinations of Optical Properties, Position, and Size of Inclusion, and Geometry

ky ks ks

ky

k5 k(; k7

1.50 £ 0.03 32401 91+05

32+2

135 + 12 667 £ 82 3744 £ 680
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methodology (used for the EOPTER and BAER solvers), we
mention the intrinsic approximations of the ER [8].

3. ANALYTICAL SOLVERS VERSUS MC
SIMULATIONS

In this section, we have used MC simulations as a gold stan-
dard to investigate the accuracy of the proposed forward solv-
ers to describe photon migration in the presence of totally and
high-absorbing inclusions. Indeed, the method detailed in this
section consists of dividing the comparisons between MC
simulations and analytical solvers into progressive steps.
The diverse steps identify different volume ranges of the in-
clusion, different domains of analysis, and different solvers.
A perturbation MC code was used to simulate photon migra-
tion through absorbing objects placed inside turbid media
[15,23] in order to have reference data for our investigations.
We would like to point out that all simulated MC data
presented in this section were obtained by using an isotropic
scattering function.

A. Time Domain

We consider a Dirac §(f) pencil beam source (propagating
along z axis) impinging normally on the medium at the en-
trance point [origin of the orthogonal coordinate system
(,y,2)]. Figure 3 (reflectance from a semi-infinite medium)
and Fig. 4 (transmittance through a slab 4 cm thick) show
a comparison of the relative temporal contrast |C(¢)| between
the EOPT and EOPTER solvers with the results of MC
simulations. In particular, three different totally absorbing
inclusions of volumes 5, 50, and 100 mm?® set at different
depths (columns) (z;/mm = 10, 15,20 for reflectance and
z;/mm = 30, 25, 20 for transmittance) were considered. The
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Fig. 3. Time-resolved relative contrast |C(t)| for reflectance obtained
with MC simulations, and with the EOPTER and the EOPT solvers
for a black inclusion located inside a semi-infinite medium with
u; =1 mm™'. The plots pertain to three different arrangements of
detector and inclusion.
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Fig. 4. Time-resolved relative contrast |C(¢)| for transmittance ob-

tained with MC simulations, with the EOPTER and EOPT solvers

for a black inclusion located inside a slab 40 mm thick slab with

4 = 1 mm~!. The plots pertain to three different arrangements of

the inclusion [positions (x;.y;,2;)].

refractive index of the medium and the external region was
1.33, and ¢, = 1 mm™! in both figures. We would like to stress
that the results are independent of y,. In Fig. 3, we have re-
flectance measurements from a semi-infinite medium at
source—detector distances p =5 mm (R5) and p = 30 mm
(R30 and R30S): the inclusion is set midway between the
source [placed at (0,0,0)] and the detector [placed at
(5,0,0) mm for R5 and at (30,0,0) mm for R30] for R5 and
R30 (x;/mm = 2.5, 15, y; =0), and with an x-offset of
15 mm with respect to the midpoint for R30S (that has
x; = 30 mm, y; = 0). In Fig. 4, we have transmittance mea-
surements through a 4 cm thick slab (for three configurations
of the inclusion) with the detector at x =y =0 and
2 = 40 mm: the inclusion is set on-axis for (x; = y; = 0)
and off-axis with an x-offset of 10 and 20 mm, respectively,
that is, x; = 10 mm, y; =0 and x; = 20 mm, y; = 0. The
EOPT solver is used assuming a value of Ay, = 10 mm™,
which practically simulates a totally absorbing inclusion.
We note that for the overall set of comparisons, the EOPTER
solver shows better agreement with the MC results than the
EOPT solver. This fact confirms that the ER improves the per-
formance of the EOPT solver. We would also like to stress that
in Fig. 3, for the case with V = 100 mm?® and z; = 20 mm, the
EOPT curve for R5 is very close to the EOPTER curve for R30
so that they are almost undistinguishable. In Fig. 3, the largest
deviation occurs for the detector at 5 mm (R5) for the shal-
lower depth z; = 10 mm. For this situation, in which the black
inclusions are only a few millimeters from the source and the
detector, we expect that the two simplifying assumptions of
the diffusion approximations may fail. Also for Fig. 4, the
worst comparison is obtained when the inclusion is closer
to the detector, that is, for the case x; = 0, 2; = 30 mm. There-
fore, we observe that a significant reduction in accuracy is
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Fig. 5. Comparison of time-resolved relative transmittance contrast

|C(t)| obtained with MC simulations and with the EOPTER solver for a
black inclusion located inside a slab 40 mm thick with ; = 1 mm™L.
The plots pertain to three arrangements of the inclusion [positions

(5, Y1520

obtained when the totally absorbing inclusion is too close to
the source or the detector. The overall agreement between the
EOPT and EOPTER solvers and the MC results is within about
20% and 10%, respectively (provided we exclude the early
times, i.e., those with ¢ > 1000 ps). The only deviation is
for the case RH for reflectance and the case x; =0 for
transmittance.

Since for the description of totally absorbing inclusions the
EOPTER solver shows the best performance, in Fig. 5 we re-
strict the comparisons to this solver for two larger volumes of
250 and 500 mm?®. The purpose of this set of comparisons is to
check the performance of the EOPTER solver for higher
relative perturbation. Figure 5 shows the plot of relative tem-
poral contrast |C(t)| for the same optical properties and geom-
etry as in Fig. 3. The EOPTER solver is shown to be, except
the case x; =0, 2; = 30 mm, in good agreement with the
results of MC simulations. Limiting the analysis to the cases
2; = 20 and 25 mm, we have differences within about 10%.
A worse agreement is obtained for situations with shorter
distances between the inclusions and the detector.

B. CW Domain

We propose comparisons between MC results and the EOPT,
EOPTER, and BAER solvers for the reflectance and transmit-
tance configurations considered in Figs. 3 and 4 where a CW
source replaces the 6(f) function. Figures 6 (reflectance
from a semi-infinite medium) and 7 (transmittance through
a slab 4 cm thick) show a comparison of relative CW contrast
Ccw for three different totally absorbing inclusions. The vol-
umes and depths of the inclusions were the same as those
Figs. 3 and 4, and with a medium with z, =1 mm,
4o = 0.01 mm~!, and refractive index equal to 1.33; no mis-
match with the external was considered. The source is at
(0,0,0), whereas the detector is at (30,0,0) mm for Fig. 6
and at (0,0,40) mm for Fig. 7. The plots display the relative
contrast |Ccw| obtained with the EOPT solver (thin solid
curves), the EOPTER solver (dotted curves), the BAER solver
(thick solid curves), and with MC simulations (open circles)
versus the x; position of the black defect with y; = 0.
The EOPT solver is calculated assuming a value of
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Fig. 6. Comparison of CW reflectance contrast obtained with MC
simulations and with the EOPT solver, the EOPTER solver, and the
BAER solver for a black inclusion located inside a semi-infinite
medium with g = 1 mm™ and y, = 0.01 mm™'.

Ap, = 10 mm™!, which practically simulates a totally absorb-
ing inclusion. Similarly to the time domain, we note that the
best agreement is obtained for the EOPTER solver. The agree-
ment between the EOPTER solver and MC simulations is
within 10%. A worse behavior is obtained for the EOPT solver,
which shows agreement within 20% with the MC simulations.
Lastly, we have the comparisons with the BAER solver, which
shows worst agreement with the MC simulations (differences
up to about 30%—-40%) but still acceptable.

In order to have an overview of the performance of the
EOPT solver for any Ay,, Fig. 8 shows the plot of relative
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Fig. 7. Comparison of CW transmittance contrast obtained with MC
simulations and with the EOPT solver, the EOPTER solver, and the

BAER solver for a black inclusion located inside a slab 40 mm thick
with g, = 1 mm™ and g, = 0.01 mm!.
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Fig. 8. Comparison of CW transmittance contrast for an inclusion
with finite Ay, contrast obtained with MC simulations and with the
EOPT solver for a slab 40 mm thick with x, =1 mm and
Uy = 0.01 mm1

contrast Cgy for transmittance through a slab 4 cm thick ob-
tained with the EOPT solver and with MC simulations versus
variation of absorption Ay, between the inclusion and the
background. The range of values of Ay, is up to saturation,
which starts at about Ay, = 2 mm™L. The data have been plot-
ted for volumes of 100 and 500 mm? for the defect placed at
depth z; = 20 mm, &; = y; = 0. A medium with 4, = 1 mm™,
Ug = 0.01 mm~!, and with no refractive index mismatch with
the external was considered. The source is at (0,0,0) and the
detector at (0,0,40) mm. The agreement between the EOPT
solver and MC simulations is within about 10% for the volume
of 500 mm?® and about 5% for for the volume of 100 mm?.

4. DISCUSSION AND CONCLUSIONS

In the comparisons presented between the EOPT, EOPTER,
and BAER solvers with the results of MC simulations, we have
observed that when dealing with totally absorbing inclusions,
worst agreement is obtained when the position of the inclu-
sion is close to the source and the detector. Since all the solv-
ers used make use of the DE, we argue that the origin of this
behavior is likely due to the break down of the simplifying
assumptions of the diffusion approximation. Second, we have
observed that in the presence of totally absorbing inclusions,
the performance of the EOPTER solver is largely better
than that of the EOPT solver. Thus, the ER improves the
description of photon migration when applied to the EOPT.
Practically, the ER improves the convergence property and
the performance of the eighth-order solution. On this ground,
we really expect that such a benefit of the ER is independent
of the forward solver used in conjunction with this relation. As
a methodological proposal, the ER can therefore be used to
implement any forward solver in the calculation of the pertur-
bation produced by a totally absorbing object. The examples
produced for the BAER solver are paradigmatic in this sense.
The Born approximation, which otherwise could not be used
at all with totally absorbing inclusions, can be implemented
together with the ER and the accuracy achievable with this
solver is still acceptable for the CW domain.

About the lower accuracy that is sometimes observed for
the EOPTER solver for time-domain transmittance at early
times with the inclusion on-axis (Figs. 4 and 5) and in general,
when the inclusion is close to the source and the detector, we
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can express some possible explanations. First, we notice that
the ER holds whenever the photon paths can statistically
cover both the totally absorbing volume and its corresponding
equivalent volume. This condition is likely to fail in the con-
ditions mentioned since the photon paths in these situations
are preferentially confined inside a narrower volume com-
pared with the equivalent volume related to the ER and this
fact affects the applicability of the ER. Second, we notice that
at early times and close to the source and the detector, the
diffusion approximation, on which it is also based partially,
the EOPTER solver, may fail. Actually, the lower accuracy
at early times regards the points around the ballistic peak
where the DE does not hold. Further information about the
validity of the ER that may help to understand the validity
of the EOPTER solver can be found in [8] where the ER is
extensively studied by means of MC simulations.

The novelty of this paper is manifold. First, we have criti-
cally reviewed the literature where several forward solvers
have been proposed for describing the effects of absorbing
perturbations: the limitations of previously existing theories
have been addressed. Second, we have improved further
the solution of a heuristic perturbative approach [16-19]
to the DE. Third, we have proposed a methodology that ex-
ploits the ER to reformulate the forward problem of a black
or highly absorbing inclusion in terms of weaker ones with a
re-scaled volume.

We have critically discussed the usefulness of the theory
behind the so-called banana-shape regions [6], which, despite
its “notoriety,” has found no real applications in the field of
NIRS and DOT. The exact meaning of using a “small” totally
absorbing object to “probe” a diffusive light field is to provide
the probability of a photon detected to intersect (or pass
through) the region where the object is located. However,
even if we could calculate this probability, we could not re-
construct the perturbation caused by a real defect having a
finite absorption contrast, which is more relevant for practical
applications. There is also no evidence that knowing the prob-
ability of a photon detected to intersect a region (by using a
“small” black sphere) we could use it to estimate the proba-
bility of given photon paths that connect the source and the
detector (as it is hinted in [6]). In fact, for estimating this prob-
ability of photon paths, we need to know the probability of
multiple events (i.e., the probability of a photon detected to
visit multiple points), and therefore, other approaches (like
the path integral) would be necessary. We argue that no exact
expressions of the probability involving the power subtracted
by a black sphere has been provided in the literature, and also
that the expressions that can be derived within the DE cannot
provide the correct estimates of this probability as has been
shown in Section 2. We have shown this point by using a non-
absorbing diffusive medium where the DE reduces to the
Poisson equation and exact solutions are easily found. We
have discussed possible reasons of the failure of the DE to
describe light propagation in the presence of a black object.
We have pinpointed the relationship between the theory pro-
posed for the banana-shape regions theory [6] and the Born
approximation. We have stated that if one follows the reason-
ing of the authors, then it is possible to derive the so-called
“banana-shape regions” in any bounded geometry by knowing
the mean path length in the small region occupied by a prob-
ing black object. Therefore, the banana-shape approach is a
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first-order perturbation approach; we note that this observa-
tion can be linked to our recently proposed “ER,” and also to
some of the results shown in this paper where we have applied
this relation and the Born approximation for calculating the
perturbation induced by a black sphere.

We have presented two forward solvers, EOPT and
EOPTER, and a new methodology for description of photon
migration in the presence of highly or totally absorbing inclu-
sions embedded in diffusive media in both time and CW
domains. We have improved further the solution of a heuristic
perturbative approach [16-19] based on a higher order pertur-
bation theory and the Padé approximants by developing the
expansion up to the eighth order. We have also proposed
the use of the ER as a way to reformulate the problem of
highly or totally absorbing inclusions in terms of milder ones
with a re-scaled volume. This methodology is quite general
and can be applied to different forward models. By using
MC simulations, we have shown that the EOPTER solver
can model totally absorbing inclusions with an error smaller
than about 10%, whereas the EOPT solver shows an error
smaller than about 20%. Looking at Fig. 1, we can conclude
by noting that the performances of the previous theories, like
the banana-shape regions theory, are considerably worse than
those of the proposed forward solvers.
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