2 research outputs found

    An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12

    Get PDF
    Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP. Members of the WeFold coopetition (cooperation and competition) participated in CASP as individual teams, but also shared components of their methods to create hybrid pipelines and actively contributed to this effort. We assert that the scale and diversity of integrative prediction pipelines could not have been achieved by any individual lab or even by any collaboration among a few partners. The models contributed by the participating groups and generated by the pipelines are publicly available at the WeFold website providing a wealth of data that remains to be tapped. Here, we analyze the results of the 2014 and 2016 pipelines showing improvements according to the CASP assessment as well as areas that require further adjustments and research

    Time Resolution and Dynamic Range of Field-Effect Transistor–Based Terahertz Detectors

    No full text
    We studied time resolution and response power dependence of three terahertz detectors based on significantly different types of field-effect transistors. We analyzed the photoresponse of custom-made Si junctionless FETs, Si-MOSFETs, and GaAs-based high-electron-mobility transistor detectors. Applying monochromatic radiation of a high-power, pulsed, line-tunable molecular THz laser, which operated at frequencies in the range from 0.6 to 3.3 THz, we demonstrated that all these detectors have at least nanosecond response time. We showed that detectors yield a linear response in a wide range of radiation power. At high powers, the response saturates varying with radiation power P as U = R0P/(1 + P/P-s), where R-0 is the low-power responsivity and P-s is the saturation power. We demonstrated that the linear part response decreases with radiation frequency increase as R-0 proportional to f(-3), whereas the power at which signal saturates increases as P-s proportional to f(3). We discussed the observed dependencies in the framework of the Dyakonov-Shur mechanism and detector-antenna impedance matching. Our study showed that FET transistors can be used as ultrafast room temperature detectors of THz radiation and that their dynamic range extends over many orders of magnitude of power of incoming THz radiation. Therefore, when embedded with current driven read-out electronics, they are very well adopted for operation with high power pulsed sources
    corecore