50 research outputs found

    Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

    Get PDF
    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy

    A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt–TSC2-mTOR signaling

    Get PDF
    Nanoparticles are now emerging as a novel class of autophagy activators. Functionalized single-walled carbon nanotubes (f-SWCNTs) are valuable nanomaterials in many industries. This article is designed to assess the autophagic response for f-SWCNTs exposure in vitro and in vivo. A few types of f-SWCNTs were screened in human lung adenocarcinoma A549 cells for the autophagic response and related pathways in vitro. Formation of autophagosomes and LC3-II upregulation were confirmed on the basis of electron microscopy and LC3 western blotting for COOH-CNT, but not for PABS-CNT and PEG-CNT. MTT assay showed marked increase in cell viability, when COOH-CNT was added to cells in the presence of autophagy inhibitor 3MA, ATG6 or TSC2 siRNA. Consistent with the involvement of the Akt–TSC1/2–mTOR pathway, the phosphorylation levels of mTOR, mTOR's substrate S6 and Akt were shown significantly decreased in A549 cells on treatment with COOH-CNT using western blotting. What's more, autophagy inhibitor 3MA significantly reduced the lung edema in vivo. In a word, COOH-CNT induced autophagic cell death in A549 cells through the AKT–TSC2–mTOR pathway and caused acute lung injury in vivo. Inhibition of autophagy significantly reduced COOH-CNT-induced autophagic cell death and ameliorated acute lung injury in mice, suggesting a potential remedy to address the growing concerns on the safety of nanomaterials

    Selective targeting of microglia by quantum dots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases.</p> <p>Methods</p> <p>Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies.</p> <p>Results</p> <p>In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity.</p> <p>Conclusions</p> <p>These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.</p

    Induction of protein citrullination and auto-antibodies production in murine exposed to nickel

    Get PDF
    Abstract Citrullination, or the post-translational deimination of polypeptide-bound arginine, is involved in several pathological processes in the body, including autoimmunity and tumorigenesis. Recent studies have shown that nanomaterials can trigger protein citrullination, which might constitute a common pathogenic link to disease development. Here we demonstrated auto-antibody production in serum of nanomaterials-treated mice. Citrullination-associated phenomena and PAD levels were found to be elevated in nanomaterials -treated cell lines as well as in the spleen, kidneys and lymph nodes of mice, suggesting a systemic response to nanomaterials injection, and validated in human pleural and pericardial malignant mesothelioma (MM) samples. The observed systemic responses in mice exposed to nanomaterials support the evidence linking exposure to environmental factors with the development of autoimmunity responses and reinforces the need for comprehensive safety screening of nanomaterials. Furthermore, these nanomaterials induce pathological processes that mimic those observed in Pleural MM, and therefore require further investigations into their carcinogenicity

    A Novel Ex Vivo Model of Aortic Valve Calcification. A Preliminary Report

    No full text
    [eng] Background: No pharmacological treatment exists to prevent or stop the calcification process of aortic valves causing aortic stenosis. The aim of this study was to develop a robust model of induced calcification in whole aortic valve leaflets which could be suitable for studies of the basic mechanisms and for testing potentially inhibitory drugs. Methods: Pig hearts were obtained from a commercial abattoir. The aortic valve leaflets were dissected free and randomized between experimental groups. Whole leaflets were cultured in individual wells. Two growth media were used for cultivation: standard growth medium and an antimyofibroblastic growth medium. The latter was employed to inhibit contraction of the leaflet into a ball-like structure. Calcification was induced in the growth medium by supplementation with an osteogenic medium. Leaflets were cultivated for four weeks and medium was changed every third day. To block calcification, the inhibitor SNF472 (a formulation of the hexasodium salt of myo-inositol hexaphosphate hexasodium salt) was used at concentrations between 1 and 100 µM. After cultivation for four weeks the leaflets were snap frozen in liquid nitrogen and kept at −80 °C until blind assessment of the calcium amount in leaflets by inductively coupled plasma optical emission spectroscopy. For statistical analysis, a Kruskal-Wallis test with Dunn's post-test was applied. Results: Osteodifferentiation with calcium accumulation was in principle absent when standard medium was used. However, when the antimyofibroblastic medium was used, a strong calcium accumulation was induced (p = 0.006 compared to controls), and this was blocked in a dose-dependent manner by the calcification inhibitor SNF472 (p = 0.008), with an EC50 of 3.3 µM. Conclusion: A model of experimentally induced calcification in cultured whole leaflets from porcine aortic valves was developed. This model can be useful for studying the basic mechanisms of valve calcification and to test pharmacological approaches to inhibit calcification
    corecore