29 research outputs found

    Flavonoids in Lemon and Grapefruit IntegroPectin**

    Get PDF
    Following the analysis of terpenes present in new lemon and grapefruit “IntegroPectin” pectins obtained via the hydrodynamic cavitation of industrial lemon and grapefruit processing waste, the HPLC-MS analysis of flavonoid and other phenolic compounds reveals the presence of eriocitrin, naringin, hesperidin and kaempferol typical of the respective citrus fruits. The pectic fibers rich in rhamnogalacturonan-I regions act as chemical sponges adsorbing and concentrating at their outer surface highly bioactive citrus flavonoids and terpenes. These findings, together with the unique molecular structure of these new whole citrus pectins, provide preliminary insight into the broad-scope biological activity of these new biomaterials. Numerous new biomedical applications are anticipated, including likely use in the prevention and treatment of microbial infections and neurodegenerative disease

    Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells

    Get PDF
    Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Performance of an echo canceller based on pseudo-noise training sequences

    No full text
    Different design issues and performance aspects of a lowcomplexity echo canceller for digital On-Channel Repeaters (OCRs) are described in this paper. Locally generated lowpower PN sequences are injected in the repeated signal to facilitate the estimation process of the coupling channel between the transmitting and the receiving antennas. In particular, we analyse a low-complexity channel estimation technique based on the autocorrelation properties of the training sequence. An expression for the cancelling performance is found analytically, in terms of Mean Rejection Ratio (MRR), and the impact of the filtering stages within the repeater is also addressed
    corecore