19 research outputs found

    Identification of rare sequence variation underlying heritable pulmonary arterial hypertension.

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis. Deleterious variation within components of the transforming growth factor-β pathway, particularly the bone morphogenetic protein type 2 receptor (BMPR2), underlies most heritable forms of PAH. To identify the missing heritability we perform whole-genome sequencing in 1038 PAH index cases and 6385 PAH-negative control subjects. Case-control analyses reveal significant overrepresentation of rare variants in ATP13A3, AQP1 and SOX17, and provide independent validation of a critical role for GDF2 in PAH. We demonstrate familial segregation of mutations in SOX17 and AQP1 with PAH. Mutations in GDF2, encoding a BMPR2 ligand, lead to reduced secretion from transfected cells. In addition, we identify pathogenic mutations in the majority of previously reported PAH genes, and provide evidence for further putative genes. Taken together these findings contribute new insights into the molecular basis of PAH and indicate unexplored pathways for therapeutic intervention

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    The California Undercurrent as a Source of Upwelled Waters in a Coastal Filament

    No full text
    In the California Current System, cross-shore transport of upwelled, nutrient-rich waters from the coastal margin to the open ocean can occur within intermittent, submesoscale-to-mesoscale features such as filaments. Time-varying spatial gradients within filaments affect net cross-shore fluxes of physical, biological, and chemical tracers but require high-resolution measurements to accurately estimate. In June 2017, the California Current Ecosystem Long Term Ecological Research program process cruise (P1706) conducted repeat sections by an autonomous Spray glider and a towed SeaSoar to investigate the role of one such coastal upwelling feature, the Morro Bay filament, which was characterized by enhanced cross-filament gradients (both physical and biological) and an along-filament jet. Within the jet, speeds were up to 0.78&nbsp;m/s and the offshore transport was 1.5 Sverdrups (3.8 Sverdrups) in the upper 100&nbsp;m (500&nbsp;m). A climatological data product from the sustained California Underwater Glider Network provided necessary information for water mass differentiation. The analysis revealed that the cold, salty side of the filament carried recently upwelled California Undercurrent water and corresponded to higher chlorophyll-a fluorescence than the warm, fresh side, which carried California Current water. Thus, there was a convergence of heterogeneous water masses within the core of the filament’s offshore-flowing jet. These water masses have different geographic origins and thermohaline characteristics, which has implications for filament-related cross-shore fluxes and submesoscale-to-mesoscale biological community structure gradients

    Reduced circulating BMP10 and BMP9 and elevated endoglin are associated with disease severity, decompensation and pulmonary vascular syndromes in patients with cirrhosis.

    Get PDF
    BACKGROUND: BMP9, originating from the liver, and BMP10 are circulating BMPs that preserve vascular endothelial integrity. We assessed BMP9, BMP10 and soluble endoglin (sEng) levels and their relationships to liver disease severity and associated pulmonary vascular syndromes in a cohort of well-characterised liver disease patients. METHODS: Plasma samples from patients with liver disease (n = 83) and non-disease controls (n = 21) were assayed for BMP9, BMP10 and sEng. Levels were also assessed in a separate cohort of controls (n = 27) and PoPH patients (n = 8). Expression of mRNA and immunohistochemical staining was undertaken in liver biopsy specimens. Plasma BMP activity was assessed using an endothelial cell bioassay. FINDINGS: Plasma BMP9 and BMP10 levels were normal in patients with compensated cirrhosis or fibrosis without cirrhosis, but markedly reduced in patients with decompensated cirrhosis, including those with hepatopulmonary syndrome (HPS) or portopulmonary hypertension (PoPH). Liver biopsy specimens revealed reduced mRNA expression and immunostaining for these ligands. Patient plasma samples with reduced BMP9 and BMP10 levels exhibited low BMP activity that was restored with exogenous BMP9. Endoglin mRNA expression was increased in cirrhotic livers and elevated circulating sEng levels in PoPH and HPS patients suggested increased endothelial sEng shedding in these syndromes. INTERPRETATION: Plasma BMP9 and BMP10 levels are reduced in decompensated cirrhosis, leading to reduced circulating BMP activity on the vascular endothelium. The pulmonary complications of cirrhosis, PoPH and HPS, are associated with markedly reduced BMP9 and BMP10 and increased sEng levels, suggesting that supplementation with exogenous ligands might be a therapeutic approach for PoPH and HPS

    Angiopoietin 2 and hsCRP are associated with pulmonary hemodynamics and long-term mortality respectively in CTEPH-Results from a prospective discovery and validation biomarker study.

    No full text
    INTRODUCTION: Chronic thromboembolic pulmonary hypertension (CTEPH) is an underdiagnosed disease of uncertain etiology. Altered endothelial homeostasis, defective angiogenesis and inflammation are implicated. Angiopoietin 2 (Ang2) impairs acute thrombus resolution and is associated with vasculopathy in idiopathic pulmonary arterial hypertension. METHODS: We assessed circulating proteins associated with these processes in serum from patients with CTEPH (n = 71) before and after pulmonary endarterectomy (PEA), chronic thromboembolic pulmonary disease without pulmonary hypertension (CTEPD, n = 9) and healthy controls (n = 20) using Luminex multiplex arrays. Comparisons between groups were made using multivariable rank regression models. Ang2 and high-sensitivity C-reactive protein (hsCRP) were measured in a larger validation dataset (CTEPH = 277, CTEPD = 26). Cox proportional hazards models were used to identify markers predictive of survival. RESULTS: In CTEPH patients, Ang2, interleukin (IL) 8, tumor necrosis factor α, and hsCRP were elevated compared to controls, while vascular endothelial growth factor (VEGF) c was lower (p < 0.05). Ang2 fell post-PEA (p < 0.05) and was associated with both pre- and post-PEA pulmonary hemodynamic variables and functional assessments (p < 0.05). In the validation dataset, Ang2 was significantly higher in CTEPH compared to CTEPD. Pre-operative hsCRP was an independent predictor of mortality. CONCLUSIONS: We hypothesize that CTEPH patients have significant distal micro-vasculopathy and consequently high circulating Ang2. Patients with CTEPD without pulmonary hypertension have no discernible distal micro-vasculopathy and therefore have low circulating Ang2. This suggests Ang2 may be critical to CTEPH disease pathogenesis (impaired thrombus organization and disease severity)
    corecore