216 research outputs found

    Dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric materials

    Get PDF
    The linear piezoelectricity theory is applied to investigate the dynamic response of coplanar interface cracks between two dissimilar piezoelectric materials subjected to the mechanical and electrical impacts. The number of cracks is arbitrary, and the interface cracks are assumed to be permeable for electric field. Integral transforms and dislocation density function are employed to reduce the problem to Cauchy singular integral equations. Numerical examples are given to show the effects of crack relative position and material property parameters on the variations of dynamic energy release rate.postprin

    Relaxed 2-D Principal Component Analysis by LpL_p Norm for Face Recognition

    Full text link
    A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-L1L_1 and G2DPCA, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxation vector and presents a weight to each subset of training data. A new relaxed scatter matrix is defined and the computed projection axes are able to increase the accuracy of face recognition. The optimal LpL_p-norms are selected in a reasonable range. Numerical experiments on practical face databased indicate that the R2DPCA has high generalization ability and can achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure

    Malignant B Cells Induce the Conversion of CD4+CD25− T Cells to Regulatory T Cells in B-Cell Non-Hodgkin Lymphoma

    Get PDF
    Recent evidence has demonstrated that regulatory T cells (Treg) were enriched in the tumor sites of patients with B-cell non-Hodgkin lymphoma (NHL). However, the causes of enrichment and suppressive mechanisms need to be further elucidated. Here we demonstrated that CD4+CD25+FoxP3+CD127lo Treg were markedly increased and their phenotypes were different in peripheral blood (PB) as well as bone marrow (BM) from newly diagnosed patients with B-cell NHL compared with those from healthy volunteers (HVs). Involved lymphatic tissues also showed higher frequencies of Treg than benign lymph nodes. Moreover, the frequencies of Treg were significantly higher in involved lymphatic tissues than those from PB as well as BM in the same patients. Suppression mediated by CD4+CD25+ Treg co-cultured with allogeneic CFSE-labeled CD4+CD25− responder cells was also higher in involved lymphatic tissues from B-cell NHL than that mediated by Treg from HVs. In addition, we found that malignant B cells significantly induced FoxP3 expression and regulatory function in CD4+CD25− T cells in vitro. In contrast, normal B cells could not induce the conversion of CD4+CD25− T cells to Treg. We also showed that the PD-1/B7-H1 pathway might play an important role in Treg induction. Taken together, our results suggest that malignant B cells induce the conversion of CD4+CD25− T cells to Treg, which may play a role in the pathogenesis of B-cell NHL and represent a promising therapeutic target

    In Situ Prior Proliferation of CD4+ CCR6+ Regulatory T Cells Facilitated by TGF-β Secreting DCs Is Crucial for Their Enrichment and Suppression in Tumor Immunity

    Get PDF
    BACKGROUND: CD4(+)CD25(+) regulatory T cells (Tregs), a heterogeneous population, were enrichment in tumor mass and played an important role in modulating anti-tumor immunity. Recently, we reported a Treg subset, CCR6(+) Tregs but not CCR6(-)Tregs, were enriched in tumor mass and closely related to poor prognosis of breast cancer patients. However, the underlying mechanism remains elusive. Here, we carefully evaluate the enrichment of CCR6(+)Tregs in tumor mass during progression of breast cancer and explore its possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: The frequency of CCR6(+)Tregs in tumor infiltrating lymphocytes (TILs ) was analyzed at early stage and at late stage of tumor in a murine breast cancer model by FACS respectively. The expansion of CCR6(+)Tregs and their CCR6(-) counterpart in tumor mass were determined by BrdU incorporation assay. The effect and its possible mechanism of tumor-resident antigen presenting cells (APCs) on the proliferation of CCR6(+)Tregs also were evaluated. The role of local expansion of CCR6(+)Tregs in their enrichment and suppression in vivo also was evaluated in adoptive cell transfer assay. We found that the prior enrichment of CCR6(+)Tregs but not CCR6(-)Tregs in tumor mass during progression of murine breast cancer, which was dependent on the dominant proliferation of CCR6(+) Tregs in situ. Further study demonstrated that tumor-resident DCs triggered the proliferation of CCR6(+)Treg cells in TGF-β dependent manner. Adoptive transfer of CCR6(+)Tregs was found to potently inhibit the function of CD8(+)T cells in vivo, which was dependent on their proliferation and subsequently enrichment in tumor mass. CONCLUSIONS/SIGNIFICANCE: Our finding suggested that CCR6(+) Tregs, a distinct subset of Tregs, exert its predominant suppressive role in tumor immunity through prior in situ expansion, which might ultimately provide helpful thoughts for the designing of Treg-based immunotherapy for tumor in the future

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle

    Get PDF
    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45-) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1+CD45− stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1+ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1+CD45− cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7+ cells and facilitated formation of eMHC+DiI− fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy

    Time to Recurrence and Survival in Serous Ovarian Tumors Predicted from Integrated Genomic Profiles

    Get PDF
    Serous ovarian cancer (SeOvCa) is an aggressive disease with differential and often inadequate therapeutic outcome after standard treatment. The Cancer Genome Atlas (TCGA) has provided rich molecular and genetic profiles from hundreds of primary surgical samples. These profiles confirm mutations of TP53 in ∼100% of patients and an extraordinarily complex profile of DNA copy number changes with considerable patient-to-patient diversity. This raises the joint challenge of exploiting all new available datasets and reducing their confounding complexity for the purpose of predicting clinical outcomes and identifying disease relevant pathway alterations. We therefore set out to use multi-data type genomic profiles (mRNA, DNA methylation, DNA copy-number alteration and microRNA) available from TCGA to identify prognostic signatures for the prediction of progression-free survival (PFS) and overall survival (OS). prediction algorithm and applied it to two datasets integrated from the four genomic data types. We (1) selected features through cross-validation; (2) generated a prognostic index for patient risk stratification; and (3) directly predicted continuous clinical outcome measures, that is, the time to recurrence and survival time. We used Kaplan-Meier p-values, hazard ratios (HR), and concordance probability estimates (CPE) to assess prediction performance, comparing separate and integrated datasets. Data integration resulted in the best PFS signature (withheld data: p-value = 0.008; HR = 2.83; CPE = 0.72).We provide a prediction tool that inputs genomic profiles of primary surgical samples and generates patient-specific predictions for the time to recurrence and survival, along with outcome risk predictions. Using integrated genomic profiles resulted in information gain for prediction of outcomes. Pathway analysis provided potential insights into functional changes affecting disease progression. The prognostic signatures, if prospectively validated, may be useful for interpreting therapeutic outcomes for clinical trials that aim to improve the therapy for SeOvCa patients

    Meta-Analysis of Gene Level Tests for Rare Variant Association

    Get PDF
    The vast majority of connections between complex disease and common genetic variants were identified through meta-analysis, a powerful approach that enables large sample sizes while protecting against common artifacts due to population structure, repeated small sample analyses, and/or limitations with sharing individual level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the unit of analysis. Here, we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features of single variant meta-analytic approaches and demonstrate its utility in a study of blood lipid levels in ∼18,500 individuals genotyped with exome arrays

    HemaMax™, a Recombinant Human Interleukin-12, Is a Potent Mitigator of Acute Radiation Injury in Mice and Non-Human Primates

    Get PDF
    HemaMax, a recombinant human interleukin-12 (IL-12), is under development to address an unmet medical need for effective treatments against acute radiation syndrome due to radiological terrorism or accident when administered at least 24 hours after radiation exposure. This study investigated pharmacokinetics, pharmacodynamics, and efficacy of m-HemaMax (recombinant murine IL-12), and HemaMax to increase survival after total body irradiation (TBI) in mice and rhesus monkeys, respectively, with no supportive care. In mice, m-HemaMax at an optimal 20 ng/mouse dose significantly increased percent survival and survival time when administered 24 hours after TBI between 8–9 Gy (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by increases in plasma interferon-γ (IFN-γ) and erythropoietin levels, recovery of femoral bone hematopoiesis characterized with the presence of IL-12 receptor β2 subunit–expressing myeloid progenitors, megakaryocytes, and osteoblasts. Mitigation of jejunal radiation damage was also examined. At allometrically equivalent doses, HemaMax showed similar pharmacokinetics in rhesus monkeys compared to m-HemaMax in mice, but more robustly increased plasma IFN-γ levels. HemaMax also increased plasma erythropoietin, IL-15, IL-18, and neopterin levels. At non-human primate doses pharmacologically equivalent to murine doses, HemaMax (100 ng/Kg and 250 ng/Kg) administered at 24 hours after TBI (6.7 Gy/LD50/30) significantly increased percent survival of HemaMax groups compared to vehicle (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by a significantly higher leukocyte (neutrophils and lymphocytes), thrombocyte, and reticulocyte counts during nadir (days 12–14) and significantly less weight loss at day 12 compared to vehicle. These findings indicate successful interspecies dose conversion and provide proof of concept that HemaMax increases survival in irradiated rhesus monkeys by promoting hematopoiesis and recovery of immune functions and possibly gastrointestinal functions, likely through a network of interactions involving dendritic cells, osteoblasts, and soluble factors such as IL-12, IFN-γ, and cytoprotectant erythropoietin
    corecore