12 research outputs found

    Atmospheric oxygenation caused by a change in volcanic degassing pressure

    Get PDF
    International audienceThe Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria1,2 and to changes in the compositions of volcanic gases3,4, but not to the composition of erupting lavas--geochemical constraints indicate that the oxidation state of basalts and their mantle sources has remained constant since 3.5 billion years ago5,6. Here we propose that a decrease in the average pressure of volcanic degassing changed the oxidation state of sulphur in volcanic gases, initiating themodern biogeochemical sulphur cycle and triggering atmospheric oxygenation. Using thermodynamic calculations simulating gas-melt equilibria in erupting magmas, we suggest that mostly submarine Archaean volcanoes produced gases with SO2/H2S,1 and low sulphur content. Emergence of the continents due to a global decrease in sea level and growth of the continental crust in the late Archaean then led to widespread subaerial volcanism, which in turn yielded gases much richer in sulphur and dominated bySO2. Dissolution of sulphur in sea water and the onset of sulphate reduction processes could then oxidize the atmosphere

    Influence of eruptive style on volcanic gas emission chemistry and temperature

    Get PDF
    Gas bubbles form as magmas ascend in the crust and exsolve volatiles. These bubbles evolve chemically and physically as magma decompression and crystallization proceed. It is generally assumed that the gas remains in thermal equilibrium with the melt but the relationship between gas and melt redox state is debated. Here, using absorption spectroscopy, we report the composition of gases emitted from the lava lake of Kīlauea Volcano, Hawaii, and calculate equilibrium conditions for the gas emissions. Our observations span a transition between more and less vigorous-degassing regimes. They reveal a temperature range of up to 250 °C, and progressive oxidation of the gas, relative to solid rock buffers, with decreasing gas temperature. We suggest that these phenomena are the result of changing gas bubble size. We find that even for more viscous magmas, fast-rising bubbles can cool adiabatically, and lose the redox signature of their associated melts. This process can result in rapid changes in the abundances of redox-sensitive gas species. Gas composition is monitored at many volcanoes in support of hazard assessment but time averaging of observations can mask such variability arising from the dynamics of degassing. In addition, the observed redox decoupling between gas and melt calls for caution in using lava chemistry to infer the composition of associated volcanic gases
    corecore