1 Influence of eruptive style on volcanic gas emission chemistry and

2 temperature

3

4 Clive Oppenheimer^{1*}, Bruno Scaillet², Andrew Woods³, A. Jeff Sutton⁴, Tamar Elias⁴, Yves
5 Moussallam^{1,5}

6

7 1. Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK.

8 2. Institut des Sciences de la Terre d'Orléans, CNRS/Université d'Orléans/BRGM, 1a Rue de la Férolerie 45071, Orléans, France

9 3. BP Institute, University of Cambridge, Madingley Road, Cambridge CB3 0EZ, UK

10 4. Hawaiian Volcano Observatory—U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI, 96718, USA.

11 5. Laboratoire Magmas et Volcans, Univ. Blaise Pascale – CNRS – IRD, OPGC, 63000 Clermont-Ferrand, France

12

13 As magmas ascend in the crust, they exsolve volatiles (e.g., carbon, oxygen, sulphur, 14 hydrogen and chlorine). Gas bubbles evolve chemically and physically as magma 15 decompression and crystallization proceed. In less viscous magmas, bubbles may rise at 16 faster rates than the melt. While it is generally assumed that gas remains in thermal 17 equilibrium with the melt, the relationship between gas and melt redox state in degassing magmas is debated. Here we report equilibrium conditions for gas emissions from the 18 19 summit lava lake of Kīlauea volcano, Hawaii, calculated from gas abundances measured in 20 the atmosphere by absorption spectroscopy. Our observations, which span a transition 21 between more and less vigorous degassing regimes, reveal a remarkable temperature span

22 of up to 250°C. They also show a progressive increase of the redox state of the gas, relative 23 to solid rock buffers, with decreasing gas temperature. We explain both phenomena as the 24 result of variation in gas bubble size, and show that even for magmas more viscous than 25 those encountered at Kilauea, fast-rising bubbles can cool adiabatically and lose the redox 26 signature of their associated melts. Our findings reveal a hitherto unrecognized process 27 that can result in rapid changes in abundances of redox-sensitive gas species. Gas 28 composition is monitored operationally at many volcanoes in support of hazard assessment 29 but, often, consecutive sets of observations are time averaged. This can mask variability 30 arising from the dynamics of degassing. Further, such redox decoupling between gas and 31 melt as we observe calls for caution in using lava chemistry to infer the composition of 32 associated volcanic gases.

33

The redox state of magmatic gases is pertinent to understanding atmospheric evolution¹ and ore 34 formation², and bears on interpretation of gas geochemical data for volcanic hazard evaluation³. 35 36 Gas ratios such as CO₂/CO, SO₂/H₂S and H₂O/H₂ are redox sensitive and may show complex variations associated with changes in eruptive style^{4,5}. Numerical models show that, during 37 38 magma ascent, melt-gas equilibria can drive magmatic redox state away from that of the reservoir or source region^{6,7}. Such models assume, however, maintenance of thermal and 39 40 chemical equilibrium between fluid and melt during decompression. While this assumption may 41 hold for more viscous magmas, it may not be valid for basalts, by far the dominant product of 42 global volcanism. For such low viscosity melts, physical models predict that decoupling between gas and melt is likely during ascent⁸. Here we consider the case for the ongoing basaltic eruption 43 44 at Kīlauea volcano, Hawaii.

45 Composition of Kilauea gas emissions

46 The bulk of gas geochemical data for Kīlauea stem from laboratory analyses of samples collected 47 in the field, with necessary corrections made to account for air contamination, back-reaction during cooling, and interaction with sampling apparatus or host rocks^{9,10}. More recent surveys 48 49 have used open-path Fourier transform infrared spectroscopy (OP-FTS) to estimate relative proportions of C-, S- and halogen-bearing species¹¹, and the pressure of gas segregation and its 50 relationship to eruption style¹². We extend this approach by measuring the redox-sensitive 51 52 species carbonyl sulfide (OCS), which permits evaluation of gas redox state with high-temporal resolution¹³. Previous work at Kīlauea, based on collection of gas samples, reached the 53 54 conclusion that melt or rock buffers the gas redox state via oxygen exchange, even below the basalt solidus⁹. We revisit this hypothesis in the light of precise OP-FTS determinations of the 55 56 molecular composition of gas emissions from the summit lava lake of Kīlauea volcano.

57 The spectrometer was positioned at the rim of Overlook Vent in Halema'uma'u crater and 58 viewing towards the lava surface, which acted as the infrared source, approximately 200 m 59 distant (Fig. 1a; Methods). Gases emitted from the lava lake surface, following ascent through 60 the magma, continually crossed the spectrometer's field-of-view. Our observations spanned two 61 degassing regimes: initially, the lake surface motion was sedate (Fig. 1b) with sporadic isolated 62 bubble bursts, but we later captured an episode of vigorous degassing associated with sustained 63 lava spattering at points along the lake perimeter, driven by the ascent and rupture of bubbles of 64 up to several metres in diameter (Fig. 1c and S5). During this more energetic activity, we 65 directed the spectrometer's field-of-view toward one of the spatter sources to maximize the contribution of its associated gas emission to the recorded absorption spectra. Over the long 66 term, these degassing regimes are found to alternate, with spattering being the more prevalent¹⁴. 67

68 We analyzed the abundances of H₂O, CO₂, CO, OCS, SO₂, HF and HCl in each spectrum 69 acquired, correcting for water and CO₂ contributions from ambient air so as to yield relative gas 70 contents for these seven species (Methods). Spectra were recorded approximately every 5 s, and 71 we regard each as a temporally-discrete gas sample. The average composition, based on 995 72 spectra spanning the two degassing regimes, is as follows (all quantities in mol%): H₂O 91.6; 73 CO₂ 4.37; SO₂ 2.89; CO 0.089; HCl 0.047; HF 0.030; OCS 0.00031. The mean molar ratios of 74 SO₂/HCl and H₂O/CO₂ are ~68 and ~25, respectively. This composition is more water-rich and sulphur-poor than some prior measurements of summit degassing from Kīlauea¹⁵, though 75 comparable to others¹⁶. Certain molecular ratios, such as CO₂/CO vary significantly (Fig. S1) for 76 77 reasons explored below. The CO_2/H_2O ratios for the two degassing regimes overlap.

78 Low-pressure degassing

79 The high water content suggests the magma has degassed its complement of volatiles up to atmospheric pressure¹², consistent with interpretations of variability in lava lake level, gas 80 81 chemistry and bulk outgassing¹⁷. To corroborate this, we re-examined analytical data for lavas 82 dredged from the Puna ridge, which trends northeast of Kīlauea, reaching about 6 km below sea level^{18,19}. These lavas were quenched as they erupted on the seabed, and span a wide range of 83 84 depths (and hence ambient water pressures). The volatile contents in their glassy rinds enable 85 calculation of equilibrium gas compositions and eruption pressures using solubility laws for equivalent melts^{20,21,22,23} combined with gas equilibrium constants for the C-O-H-S system²⁴. 86

Although the recovered samples represent different eruptions, a conspicuous trend of increasing
H₂O with decreasing pressure emerges (Fig. 2a). Taken with the near 1:1 correlation between
calculated and collection pressures (Fig. 2b), it demonstrates that this lava suite faithfully

90 captures the first-order characteristics of degassing of shallow magmas beneath Kīlauea. 91 Extrapolation of the Puna trend towards atmospheric pressure indicates that the gases we 92 measured with OP-FTS must have maintained gas-melt equilibrium over much of their ascent 93 path into the lava lake that feeds the plume. Gas-melt separation at significant depths would be 94 recorded by gas compositions richer in CO₂ (i.e., a water mole fraction of 0.6 at about 30 bar 95 near the base of the lava lake, Fig 2a), such as observed for some explosive events at Stromboli⁵. 96 Sulfur and chlorine contents in the quenched glass of the Puna samples further substantiate this 97 conclusion. The calculated trend, using a fluid-melt partition coefficient for Cl of 10 (refs. 25; 98 26), shows consistently increasing molar S/Cl ratio as pressure falls, reaching, at atmospheric 99 pressure, ~ 60 (NNO = Nickel-Nickel Oxide, Fig. 2c), consistent with the value of ~ 68 that we 100 observe in the gas emission.

101 Equilibrium temperature and redox calculations

102 Having established that the gas emissions from the lava lake have equilibrated to atmospheric 103 pressure, we can use our measurements of CO, CO₂, SO₂ and OCS in the gas plume to 104 determine, spectrum-by-spectrum, the fO_2 and equilibrium temperature of the emitted gas (Fig. 105 3; Methods). Two striking features emerge from the data distribution. First, the computed 106 equilibrium temperatures span a wide range, from about 900 to 1150°C, extending below the 107 solidus of Kīlauea basalt (980°C; ref. 27). The higher computed temperatures are mostly 108 associated with the mild degassing regime and the lower temperatures with the spattering 109 episode but there is overlap between the two. Second, the temperature range corresponds to a 110 change in the computed fO_2 values from slightly above the Quartz-Fayalite-Magnetite (QFM) 111 redox buffer at 1150°C to slightly above the NNO redox buffer at 900°C. We consider first the 112 implications of the temperature variation and then those of the relative fO_2 shift.

113 Effects of variable bubble size

114 The wide range in calculated temperatures suggests gas cooling accompanying near adiabatic 115 expansion of bubbles during ascent through the magma column. To test this hypothesis, we 116 developed a simple thermodynamic model accounting for the radiative effects and expansion of 117 bubbles due to decompression (Methods). This permits calculation of the degree of cooling of a 118 rising bubble as a function of melt viscosity and final bubble size, which control speed of ascent 119 (Fig. 4). The effect is strongest when the conductive heat flux from the melt is unable to keep 120 pace with the work done as the bubble expands, i.e., in the case of larger bubbles rising in lower 121 viscosity melts. For a typical viscosity of Kīlauea basalt of order 100 Pa s, a 2-m-radius bubble 122 (as measured at the surface) has cooled ~95°C, and a 3-m-radius bubble has cooled about 123 170°C. Due to the accelerating ascent of bubbles as they expand and the decrease in gas 124 emissivity at low pressure, the cooling is most pronounced in the final tens of metres of passage 125 below the surface, i.e., within the lava lake.

126 This analysis leads us to view the computed equilibrium temperature for an individual spectrum 127 (Fig. 3) as a proxy for bubble size population at an instant in time. As lake degassing becomes 128 more vigorous, with larger bubbles reaching the surface and dominating the gas plume chemical 129 signature that we record, gas temperatures drop due to increased cooling. Gas chemistry thus 130 reflects the dynamics of degassing of the magma in the lake such that measurements made 131 during even a brief period of variable activity yield a range of computed equilibrium 132 temperatures. Each measurement captures the gas signature at an instant in time and cautions 133 against temporal averaging of such compositional data.

134 The shift in equilibrium temperature accompanies a corresponding trend in fO_2 and notably 135 oxygen fugacity relative to established and empirical mineral buffers (Fig. 3). Between 1000°C 136 and 1100°C, the correspondence between our measurements and previously reported estimates 137 (squares in Fig. 3) is close, especially considering the distinct means by which the datasets were 138 obtained (the "Type I" gas properties were calculated from analyses made at Halema'uma'u in 139 1917; ref. 9). However, at temperatures below the solidus, our measurements increasingly trend 140 towards the NNO buffer, in contrast to calculations for "Type II" gas samples collected at 141 Kīlauea's East Rift Zone in 1983 (ref. 9). We interpret this decoupling as a further consequence 142 of changes in bubble size, with larger bubbles increasingly unable to sustain gas-melt 143 equilibrium as they rise (i.e., gas in bubble interiors cannot effectively exchange oxygen with the 144 melt). However, the internal equilibrium of the gas mixture can be expected to adjust rapidly to 145 decompression and cooling – redox kinetics involving the species of interest at magmatic temperatures are fast (timescales of order 10^{-2} s) with respect to bubble ascent rates in the 146 conduit and lava lake²⁸. 147

148 To test whether closed-system cooling can explain our observations, we compute the molecular 149 speciation and fO_2 for a gas-only mixture, as a function of temperature, starting with the 150 observed elemental composition (C-O-S-H-Cl-F) at 1150°C. This mimics the trend of our 151 spectroscopic observations closely (dashed line with arrow in Fig. 3) providing compelling 152 evidence that the internal redox state of the gas is controlled by closed-system cooling during 153 bubble expansion, with a dominant role played by sulphur owing to its abundance and range of 154 oxidation states. The gas-only cooling trend is extrapolated in Fig. 3 to 1200°C, reaching the 155 QFM redox buffer, and into the range of fO_2 reported for matrix glasses of samples from the 156 Overlook Vent ejected in 2008 and 2010 (ref. 29).

The relationship of the fO₂-temperature trend to the rock buffers for "Type I" and "Type II" 157 158 Kīlauea gases (Fig. 3) has been explained by continuous exchange of oxygen between the gas and lava, even to sub-solidus temperatures⁹. The discrepancy with our observations may reflect 159 160 differences in gas/lava interaction immediately after the escape of gases from the lava surface. In 161 the case of our measurements, there was no obstruction to gas-air exchange above the exposed 162 lava lake. In contrast, the "Type II" gases were sampled via tubing inserted into a confined space accessed through a narrow 'vigorously fuming' fissure 1-2 m above active lava⁹. The fissure was 163 164 'closed to the atmosphere at most points', and air contamination of the samples, determined analytically, was very low⁹. These circumstances may permit oxygen exchange between gas and 165 166 lava even after gases escape, and as they expand and cool in the enclosure above the lava 167 surface.

168 In Fig. 4, we contrast the gas cooling for bubbles rising through a cooler, more viscous magma $(10^5 \text{ Pa s}, 1000^\circ \text{C})$, and a hotter, less viscous magma $(10^{-1} \text{ Pa s}, 1500^\circ \text{C})$ than Kīlauea's. For the 169 170 high-viscosity case, the cooling is less pronounced owing to the lower rise speed of the bubble 171 and the greater heating of the gas. The low viscosity case is intended to simulate the higher temperatures (>1400–1600°C) and more mafic melt composition of the early Earth^{30,31}. Here, the 172 173 modelled cooling is somewhat less than the case for Kīlauea. As the magma becomes less viscous (10^2 to 10^{-1} Pa s), the bubbles rise with inertial speed and so temperature plays a stronger 174 role owing to the T^4 dependence. Hence, at 1500°C, the radiative heating of the bubble is 175 176 stronger. Nevertheless, the cooling remains significant, and we speculate that decametre-sized 177 bubbles rising rapidly through such hot and fluid melt would cool by hundreds of degrees, 178 accompanied by significant redox shifts. If this is realistic, then the redox difference between

magmas and their emitted gases should have been higher for the Early Earth making the link
between Earth's atmosphere and magmatism not as straightforward as commonly assumed³²,³³.

181

182 **References**

¹ Gaillard, F., Scaillet, B., & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. *Nature* **478**, 229-232 (2011).

² Simon, A.C. & Ripley, E. M. The role of magmatic sulfur in the formation of ore deposits. *Reviews in Mineralogy and Geochemistry* **73**, 513-578 (2011).

³ Allard, P., Burton, M., & Muré, F. Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas. *Nature* **433**, 407-410 (2005).

⁴ Burton, M., Allard, P., Muré, F. & La Spina, A. Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. *Science* **317**, 227-230 (2007).

⁵ Oppenheimer, C., et al. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. *Earth and Planetary Science Letters* **306**, 261-271 (2011).

⁶ Burgisser, A., & Scaillet, B. Redox evolution of a degassing magma rising to the surface. *Nature* **445**, 194-197 (2007).

⁷ Moretti, R., & Papale, P. On the oxidation state and volatile behavior in multicomponent gasmelt equilibria. *Chemical Geology* **213**, 265-280. (2004). ⁸ Jaupart, C. & Vergniolle, S. Laboratory models of Hawaiian and Strombolian eruptions, *Nature* 331, 58-60 (1988).

⁹ Gerlach, T. M. Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt. *Geochimica et Cosmochimica Acta* **57**, 795-814 (1993).

¹⁰ Greenland, L. P. Gas analyses from the Pu'u O'o eruption in 1985, Kilauea volcano, Hawaii. *Bulletin of Volcanology* **48**, 341-348 (1986).

¹¹ Edmonds, M., et al. Magma storage, transport and degassing during the 2008–10 summit eruption at Kīlauea Volcano, Hawai'i. *Geochimica et Cosmochimica Acta* **123**, 284-301 (2013).

¹² Edmonds, M., & Gerlach, T. M. Vapor segregation and loss in basaltic melts. *Geology* 35, 751-754 (2007).

¹³ Peters, N., Oppenheimer, C., Killingsworth, D. R., Frechette, J. & Kyle, P. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica, *Geochemistry*, *Geophysics, Geosystems* 15, 3244–3257, doi:<u>10.1002/2014GC005399</u>(2014).

¹⁴ Patrick, M. R., Orr, T., Swanson, D. A. & Lev, E. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano. *Journal of Volcanology and Geothermal Research* **328**, 247-261 (2016).

¹⁵ Gerlach, T. M. & Graeber E. J. Volatile budget of Kilauea volcano, *Nature* **313** 273-277 (1985).

¹⁶ Naughton, J. J., Derby, J. V. & Glover, R. B. Infrared measurements on volcanic gas and fume: Kilauea eruption, 1968, *Journal of Geophysical Research* **74**, 3273–3277, doi:10.1029/JB074i012p03273 (1969).

¹⁷ Patrick, M. R., Anderson, K. R., Poland, M. P., Orr, T. R. and Swanson, D. A. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. *Geology* **43**, 831-834 (2015).

¹⁸ Dixon, J. E., Clague, D. A., & Stolper, E. M. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii. *The Journal of Geology* **99**, 371-394 (1991).

¹⁹ Clague, D. A., Moore, J. G., Dixon, J. E., & Friesen, W. B. Petrology of submarine lavas from Kilauea's Puna Ridge, Hawaii. *Journal of Petrology* **36**, 299-349 (1995).

²⁰ Dixon, J. E. & Stolper, E. M. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications to degassing. *Journal of Petrology* **36**, 1633-1646 (1995).

²¹ Scaillet, B. & Pichavant, M. A model of sulphur solubility for hydrous mafic melts: application to the determination of magmatic fluid compositions of Italian volcanoes. *Annals of Geophysics* 48, 671-698 (2005).

²² Lesne, P., Scaillet, B., Pichavant, M., Iacono-Marziano, G. & Beny, J. M. The H₂O solubility of alkali basaltic melts: an experimental study. *Contributions to Mineralogy and Petrology* **162**, 133-151 (2011). ²³ Lesne, P., Scaillet, B., Pichavant, M. & Beny, J. M. The carbon dioxide solubility in alkali
basalts: an experimental study. *Contributions to Mineralogy and Petrology* 162, 153-168 (2011).

²⁴ Holloway, J. R. Igneous fluids. *Reviews in Mineralogy and Geochemistry* 17, 211-233 (1987)

²⁵ Alletti, M., et al. Chlorine partitioning between a basaltic melt and H₂O–CO₂ fluids at Mount Etna. *Chemical Geology* **263**, 37-50 (2009).

²⁶ Moretti, R., et al. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy). Part I: Volatile stocking, gas fluxing, and the shift from low-energy to highly explosive basaltic eruptions, *Chemical Geology* **482**, 1-17 (2018).

²⁷ Wright, T. L., Peck, D. L. & Shaw, H. R. Kilauea Lava Lakes: Natural Laboratories for Study of Cooling, Crystallization, and Differentiation of Basaltic Magma, in *The Geophysics of the Pacific Ocean Basin and Its Margin* (eds G. H. Sutton, M. H. Manghnani, R. Moberly and E. U. Mcafee), American Geophysical Union, Washington, D.C. 375-390. doi: 10.1029/GM019p0375 (1976)

²⁸ Burgisser, A. et al. Backward tracking of gas chemistry measurements at Erebus volcano, *Geochemistry, Geophysics, Geosystems* **13**, *Q11010, doi:*<u>10.1029/2012GC004243</u> (2012).

²⁹ Moussallam, Y. et al. The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano. *Earth and Planetary Science Letters* **450**, 317-325 (2016).

³⁰ Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. *Earth and Planetary Science Letters* **271**, 181-191 (2008).

³¹ Dingwell, D. B., Courtial, P., Giordano, D., & Nichols, A. R. L. Viscosity of peridotite liquid. *Earth and Planetary Science Letters* **226**, 127-138 (2004).

³² Li, Z. X. A. & Lee, C-T. A., The constancy of upper mantle fO₂ through time inferred from
V/Sc ratios in basalts. *Earth and Planetary Science Letters* 228, 483-493 (2004).

³³ Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. *Geochimica et Cosmochimica Acta* **66**, 3811-3826 (2002).

183 Acknowledgements

- 184 This work was supported by the Natural Environment Research Council (through the Centre for
- 185 the Observation and Modelling of Volcanoes, Earthquakes and Tectonics and grant
- 186 NE/N009312/1), and LabEx VOLTAIRE. Y.M. received additional support from the
- 187 Leverhulme Trust. We thank Peter Kelly (USGS) for his review of the pre-submission
- 188 manuscript, and three reviewers for their insightful comments on the submitted manuscript. We
- are grateful to Vitchko Tsanev for discussion on gas radiation at high temperature and pressure.

190 Author contributions

- 191 All authors contributed to preparation and revision of the manuscript. C.O. analyzed and
- 192 modelled spectroscopic data; B.S. modelled the melt-inclusion data; A.W. and C.O. developed
- the bubble-cooling model; A.J.S. and T.E. led the field campaign; and Y.M. contributed wider

194 context on melt redox evolution.

195 Competing financial interests

196 The authors declare no competing financial interests.

197 Figure captions

198 Fig 1. Instrument set up and lava lake behaviour at Halema'uma'u on 5 March 2013. (a)

199 Fourier transform infrared spectrometer with 10-inch telescope pointed at the lava lake some 200

200 m distant; (b) initial regime of mild degassing (non-spattering); (c) subsequent regime of

201 vigorous degassing (spattering). The lava lake is approximately 200 m across.

202 Fig 2. Observed and calculated gas properties for glass samples dredged from the Puna

203 ridge. (a) Evolution of the mole fraction of water in the gas (xH₂O) with pressure; dashed-line 204 logarithmic fit in is intended simply to guide the eye. (b) Comparison between modelled pressure 205 of volatile saturation and the seabed pressure where each sample was collected (dashed line 206 shows 1:1 correspondence). (c) Evolution of the SO₂/HCl molar ratio with pressure, calculated 207 for $fO_2 = NNO-0.5$. Our spectroscopic measurements of gas emissions from the lava lake are 208 indicated by square symbols in (a) and (c). Gas compositions were computed by combining 209 thermodynamic models of H₂O and CO₂ solubilities with measured volatile contents, assuming 210 saturation at all levels, and incorporating a model for fS_2 (ref. 21). These give the mole fractions 211 of C-O-H-S species (i.e., H₂O, SO₂, CO₂, etc.). Temperatures for each sample were computed using a suitable geothermometer³⁴. Error bars reflect ± 10 ppm uncertainty in measured CO₂ 212 213 contents in glass, the largest source of uncertainty (particularly at low pressure).

Fig 3. Computed equilibrium temperature and fO₂ for spectroscopic measurements of gas

215 emissions from Kīlauea's lava lake. The dataset is classified into mild-degassing (12:14 to

216 13:14 h local time) and vigorous-degassing (15:16 to 15:23 h) regimes on 5 March 2013. Also

shown are NNO and QFM buffers; the solidus temperature of Kīlauea basalt; ranges of CO₂/CO

and SO₂/H₂S, temperature- fO_2 calculations for "Type I" and "Type II" gases (Kīlauea Summit and East Rift Zone emissions, respectively) and associated empirical fit⁹; and reported fO_2 at 1200 °C for 2008 and 2010 matrix glasses for ejecta from the Overlook Vent (mean and range shown)²⁹. Note that, below the solidus, our analyses for 'vigorous degassing' are more oxidized than "Type II" gases at equivalent equilibrium temperatures. The white/black dashed line with arrow shows temperature- fO_2 calculations for closed-system, gas-only cooling starting with our measured gas composition at 1150 °C (open triangle), showing a close fit to the dataset.

Fig 4. Amount of gas cooling as a function of final bubble radius (at the surface) and

magma viscosity. Three temperature and viscosity scenarios are shown. The 1200 °C, 10^2 Pa s case corresponds to Kīlauea lava lake; the 1000 °C, 10^5 Pa s case is applicable, for instance, to the phonolite lava lake of Erebus volcano, Antarctica; while the 1500 °C, 10^{-1} Pa s case is intended to reflect early Earth magmas.

230 Methods

231 Fourier transform infrared spectroscopy

232 We used a MIDAC FTIR spectrometer with a Stirling-engine-cooled MCT detector. Incoming 233 light was collimated with a 10-inch Newtonian telescope (field of view 3 mrad). All spectra were recorded with a nominal optical path difference (retardation) of 2.0 cm, corresponding to a 0.5 234 cm⁻¹ spectral resolution. Interferograms were Fourier transformed with a Mertz phase correction 235 236 and triangular apodization. We then determined the column amounts of gases contributing to the recorded absorption spectra, employing a forward model³⁵ that simulates the atmospheric 237 238 transmittance in several discrete wavebands using line parameters for selected gas species taken 239 from the HITRAN database (hitran.org). The model considers a one-layer atmosphere with

pressure, temperature and initial column amounts specified for both atmospheric and volcanic
gas species. Simulated spectra are adjusted to fit each observed spectrum using an optimal
estimation method³⁶.

243 There are several sources of uncertainty in the retrieved column amounts, notably the limitation 244 of assuming a single-layer atmosphere (with uniform temperature), and the sensitivity of the 245 instrument line shape to off-axis rays striking the interferometer. Much care, therefore, needs to 246 be exercised in defining the limits of the spectral windows used for fitting. Our retrieval 247 procedure includes calculation of a solution covariance matrix, whose diagonal elements 248 represent the variance of each retrieved parameter, and which provides a measure of the retrieval 249 error for each parameter fitted in each spectrum. The measurement error required to derive the 250 covariance matrix is given by the standard deviation of the residual in the fit (i.e., forward model 251 minus observed spectrum). These calculated variances include contributions from the forward 252 model error (arising from the selected instrument line shape used to represent the spectrometer's 253 field of view and retardation), measurement noise, the information content of the measurement 254 for each parameter fitted (dependent on the spectral microwindow for the fit), and the degrees of 255 freedom (an inverse function of the number of parameters in the fit). Laboratory experiments 256 using very similar equipment and retrieval methods have indicated that absolute accuracies of ~5% or better can be achieved³⁷. 257

Often, when absorption spectra such as ours are collected on a volcano over a span of an hour or so, scatter plots of retrieved column amounts for two gases are presented and used to compute average molecular ratios (e.g., CO_2/CO , CO_2/SO_2 , CO_2/H_2O). These regressions may hide real source variation, however³⁸. If we treat each spectrum as an individual measurement, then we can examine rapid variations in gas composition. This requires careful correction for ambient air 263 contributions to the measured water and CO_2 abundances. Since other measured volcanic gas 264 species, i.e., CO, OCS, SO₂, HCl and HF are present in negligible quantities in the ambient 265 atmosphere, we can estimate background air contributions to CO_2 and H_2O from the intercepts of 266 linear regressions of suitable scatter plots (e.g., $CO_2 vs. SO_2$; Fig. S1). Note there is a spread of 267 observations around the linear fit shown in the figure. A much wider variation is evident when 268 looking at the redox pair $CO_2 vs. CO$ (Fig. S2).

269 Our gas 'samples' represent the molecules lying within the optical path between spectrometer 270 and lake surface (the infrared source). Thus, an individual sample is likely to contain gas just 271 released at the lava/air interface, as well as gas that has been circulating within the crater for a 272 period. Given the continuous dispersion of the plume by convection and advection, most of gas 273 molecules sensed under the conditions encountered were emitted within seconds or a few tens of 274 seconds of the measurement. Thus, each spectrum approximates the near-instantaneous emission 275 from the lava surface. Previous studies of the lava lake at Erebus volcano, Antarctica, using 276 similar equipment and methods have demonstrated the potential to track rapid variations in plume chemistry¹³. 277

278 Calculation of redox state and temperature

279 Volcanic gas compositions are often evaluated in terms of redox equilibria. This permits

assessment of gas-rock or gas-melt exchange, and reactions between magmatic and hydrothermal

281 fluids, or between gases and air. We consider two here, since they represent, sample-by-sample,

the relationship between temperature, pressure and fO_2 at equilibrium. We also have

283 measurements for all the species concerned (CO, CO₂, OCS, SO₂).

The first is:

$$285 \quad 3CO + SO_2 = 2CO_2 + OCS \quad (1)$$

and the second:

$$287 \quad CO + \frac{1}{2}O_2 = CO_2 \qquad (2)$$

Equation (1) is useful because the equilibrium is a function of pressure, p, as well as temperature, 289 T (K):

290
$$\log_{10} p = \frac{-15224}{T} + 9.22608 - \log_{10} \left\{ \left(\frac{x_{\rm CO}}{x_{\rm CO_2}} \right)^2 \cdot \left(\frac{x_{\rm CO}}{x_{\rm OCS}} \right) \cdot x_{\rm SO_2} \right\}$$
 (3)

291

292 in which the constants (K), which are based on the reference state of the pure gaseous components at 1 bar, have been calculated using data tables in ref. ³⁹ and by regressing $\log K$ 293 294 against 1/T for the temperature range 727–1227°C. For each spectrum (sample), we readily obtain x_{CO}/x_{CO_2} and x_{CO}/x_{OCS} from the corrected retrieved column amounts of each gas. x_{SO_2} is 295 296 obtained by normalizing all the seven species measurements (CO, CO₂, OCS, H₂O, SO₂, HCl 297 and HF, after air correction). Adjustments can be made for estimated H₂ and H₂S abundances but 298 these only shift computed temperatures by 1–2°C. The key assumption we then make is that the 299 internal redox of the magmatic gas mixture equilibrates to atmospheric pressure, which is 300 reasonable since gases will very rapidly reach equilibrium at temperatures above 800°C (ref. ⁴⁰). 301 This enables calculation of the equilibrium gas temperature, T (in Kelvin), for each sample. For equation (2), the equilibrium constant, K_2 , is a function of T and fO_2 , as follows: 302

303
$$CO_2/CO = K_2 \sqrt{fO_2}$$
 (4).

304 This yields:

305
$$\log_{10}\left(\frac{x_{\text{CO}_2}}{x_{\text{CO}}}\right) = \frac{14724.5}{T} - 4.5057 + \frac{1}{2}\log_{10}(fO_2)$$
 (5)

306 where fO_2 is in bars and constants are again calculated from (39). Taking equilibrium *T* 307 computed as above (3), we can then compute fO_2 for each sample.

308 For these calculations, the largest single source of uncertainty arises from the estimation of the 309 background CO₂ and H₂O abundances (column amounts), as shown in Fig. S1. The relative error 310 in this correction is greatest for spectra with low volcanic gas contributions, so we excluded from 311 further analysis those spectra for which the recorded CO₂ column amount was less than 20% 312 above background. We also looked closely at uncertainties in OCS determinations. Although the 313 proportion of OCS that we calculate in the gas phase is only around 0.0004 mol%, the 314 comparatively small abundance is compensated for by the strength of the molecule's absorption 315 cross section in the mid infrared region of the spectrum, and the retrievals are robust. We 316 excluded analyses for which the retrieved error on OCS exceeded 25%. To test the sensitivity to 317 uncertainties in these parameters, we varied them systematically to obtain error estimates of approximately $\pm 20^{\circ}$ C in temperature and $\pm 0.3 \log$ units in fO_2 , as indicated in Fig. 2. We note 318 319 that the precision on the measurements is much higher because most of the error sources are 320 systematic, and we have analysed datasets collected over short intervals of time, which 321 minimises the effect of temporal variation in background atmospheric abundance of H₂O. 322 To justify further our assumption that equilibration proceeds to atmospheric pressure, we 323 investigated the alternative scenarios. If we assume that fO_2 follows the empirical buffer reported 324 by ref. 9, then we calculate again a wide range of equilibrium temperatures but pressures are 325 found to be considerably less than atmospheric for most of the vigorous degassing spectra.

326 Further, computed pressure decreases with decreasing equilibrium temperature, which we cannot

327 rationalize. Alternatively, if we fix the gas temperature to that of the magma, and compute fO_2 328 and pressure, the latter values range between 30 and 400 bars. In this case, we cannot reconcile 329 how the emitted high-temperature gas could preserve all the way to the surface such a high-330 pressure signature acquired at depth. 331 Model for bubble cooling 332 To estimate cooling of a bubble of mass *m* rising through magma, we require a model of the rate 333 of heat transfer, *H*, to the bubble from the melt, which buffers the cooling as the bubble expands. 334 If the bubble volume changes by an amount ΔV in time Δt , the work done by the bubble is $p\Delta V$, 335 where p is the pressure, and this, along with the heat transfer, $H\Delta t$, leads to a change in the 336 internal energy of the bubble, $mc_{g}\Delta T_{g}$, according to the relation:

337
$$mc_g\Delta T_g = -p \Delta V + H\Delta t$$
 (6)

where *m* is the bubble mass, c_g is the specific heat capacity of the gas, and ΔT_g its change in temperature. The pressure in the conduit is approximated by the magmastatic pressure, which applies provided that the bubble concentration in the conduit remains small. For a bubble of fixed mass rising at speed *u*, we can express equation (6) in terms of the height of the bubble in the conduit, in differential form:

343
$$mc_{\rm g} dT_{\rm g}/dz = -p \ dV/dz + H/u \ (7)$$

344 where *z* is the distance above a reference level. Experimental data suggest that, if the Reynolds 345 number (*Re*, given by $\rho_m ur/\mu_m$ where ρ_m and μ_m are the melt density and dynamic viscosity, respectively, and *r* is the bubble radius), exceeds 100, the speed follows the approximate inertial law^{41} :

348 $u = 0.3 \sqrt{2g r}$ (8)

where g is the acceleration due to gravity. Alternatively, for $Re \leq 10$, the speed may be approximated by⁴¹:

351
$$u = 2g(\rho_m - \rho_g)r^2 / 9\mu_m$$
 (9)

where ρ_g is the gas density. We assume a simple transition from one regime to the other, as the bubble rises and *Re* increases, when the two speeds (8) and (9) are equal.

354 The heat flux, H, from the melt to the bubble depends on the bubble rise speed, and is given in 355 terms of the average thickness of the thermal boundary layer in the melt around the bubble. As 356 melt is displaced by the bubble, the boundary layer thickens from the top to the base of the 357 bubble. Since the flow around the bubble has time scale 2r/u, the average boundary layer 358 thickness is of order $\sqrt{(\kappa_m r/u)}$, where κ_m is the thermal diffusivity of the melt. Experiments and numerical calculations⁴² for spherical bubbles with low *Re* (<100), as is the case for the majority 359 360 of calculations herein, suggest the constants of proportionality for the average heat flux from the 361 melt, leading to the following approximate law:

362
$$H = (8/\pi^{\frac{1}{2}}) \rho_{\rm m} c_{\rm m} \pi r^2 \kappa_{\rm m} (T_{\rm m} - T_{\rm s}) / (\kappa_{\rm m} r/u)^{\frac{1}{2}}$$
(10)

where $c_{\rm m}$ is the specific heat capacity of the melt, $T_{\rm m}$ its temperature, and $T_{\rm s}$ is the average surface temperature of the bubble. This heat flux balances that from the melt surface to the gas in the bubble. This involves both convective and radiative heat transfer from the bubble surface to the gas in the bubble. The convective heat transfer, H_{conv} , scales with the Rayleigh number of the bubble, with a shape factor associated with the convective flow in the bubble. As a simplified parameterisation, we write the convective flux using the relation for high Rayleigh number convection⁴³:

370
$$H_{\text{conv}} = 0.4 \, \pi r \, \rho_{\text{g}} c_{\text{g}} \kappa_{\text{g}} \left[g \left(T_{\text{s}} - T_{\text{g}} \right) r^3 / T_0 \, \kappa_{\text{g}} \, \nu_{\text{g}} \right]^{1/3} \left(T_{\text{s}} - T_{\text{g}} \right)$$
(11)

371 where T_0 is a reference temperature for the gas in the bubble, here assumed to equal T_m , and κ_g 372 and ν_g are the thermal diffusivity and kinematic viscosity of the gas, respectively. The radiative 373 heat transfer between the melt at the surface and the gas in the bubble, H_{rad} , is given by the 374 Stefan-Boltmann law:

375
$$H_{\rm rad} = 4\pi r^2 \sigma E(T_{\rm g}, r, p) (T_{\rm s}^4 - T_{\rm g}^4)$$
 (12)

376 where σ is the Boltzmann constant and $E(T_g, r, p)$ is the emissivity of the gas in the bubble. The 377 emissivity depends on the mean path length of the radiation passing through the bubble (4r/3 for)378 a spherical geometry), with certain wavelengths of the radiation being absorbed and re-emitted 379 by the gas. It also depends on the pressure and temperature of the gas. We simplify the 380 estimation of emissivity by assuming that the gas is pure water vapour, which is reasonable given 381 the high measured water contents in the pressure range of relevance (Fig. 2a). Emissivities of 382 water at elevated temperatures and pressures have been investigated in the context of industrial 383 furnaces and we have built an empirical model for emissivity as a function of bubble radius, gas 384 temperature and pressure using the look up tables in ref. 44.

By equating the heat flux from (10) with the sum of heat fluxes from (11) and (12), we can find the average surface temperature of the gas bubble, T_s , in terms of the far-field magma

temperature, $T_{\rm m}$, and the mean gas temperature within the bubble, $T_{\rm g}$. With this value for $T_{\rm s}$, we can calculate the heat flux using (10) and the gas temperature, $T_{\rm g}$, of the bubble as it ascends by integration of equation (7).

390 We have solved the model for the case of water vapour bubbles rising from a depth of 1500 m 391 (the depth of the magma chamber located beneath the lava lake) to the surface. We find that, as the pressure falls off towards atmospheric pressure and the bubble accelerates upwards in the 392 393 uppermost conduit and lava lake, the heat flux from the magma is unable to keep pace with the 394 work done in expanding the bubble. It is here that the cooling is most pronounced. On reaching 395 the surface, the gas temperature may be tens or even a few hundred degrees cooler than the 396 magma, depending on the size of the bubble and the viscosity of the magma, which control the 397 rise speed (Fig. 4).

The temperature of the bubble surface as well as of the vapour in the bubble for a given temperature and magma viscosity is shown in Fig. S3. It is seen in this case that the surface temperature lags the gas cooling by between 5 and 50°C.

401 We stress that our treatment here is simplified. There is uncertainty in the exact coefficients in 402 (9–10), owing to the complexity of actual bubble shapes. For simplicity, we have taken them to 403 be spherical but in reality they would have different shape factors as they stretch and become 404 more elliptical. Also, the details of the flow associated with the convective mixing inside the 405 bubble (9) and the model of the absorption of radiation (10) provide representative but simplified 406 expressions for the magnitude of the heat transfer. For example, we neglect temperature 407 variations around the bubble surface. To illustrate the sensitivity of the calculations to the 408 detailed parameterisation, Fig. S4 compares the computed gas cooling as a function of final

409	bubble size for gas emissivities 0.5 and 1.5 times the values taken from the look up tables of ref.
410	44. While this changes the predictions, the magnitude of the cooling remains of a similar order.
411	These changes in the value of the emissivity can be interpreted as uncertainty in the shape factor
412	of the gas bubble, which may evolve into a non-spherical shape, as well as some of the
413	uncertainty in the emissivity (which is only partially constrained at elevated temperatures and
414	pressures). We conclude that these simple cooling estimates corroborate our explanation for the
415	span of equilibrium temperatures calculated for the gas emissions from Kīlauea and evident in
416	Fig. 3.
417	Some estimates of bubble sizes are quoted in the literature cited in the main text. Fig. S5 offers
418	an impression of the sizes attained by rupturing bubbles during spatter episodes at Kīlauea.
419	Additional Information
420	Correspondence and requests for materials should be addressed to C.O. <u>co200@cam.ac.uk</u>
421	Data availability
422	The datasets generated and analysed during the current study are available from the
423	corresponding author upon reasonable request and with permission of USGS Hawaiian Volcano
424	Observatory.

425

426 References

³⁴ Wallace, P. & Carmichael, I.S. Sulfur in basaltic magmas. *Geochimica et Cosmochimica Acta*56, 1863-1874 (1992).

³⁵ Oppenheimer, C. & Kyle, P.R. Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. *Journal of Volcanology and Geothermal Research* **177**, 743-754 (2008).

³⁶ Rodgers, C. D. Characterization and error analysis of profiles retrieved from remote sounding measurements, *Journal of Geophysical Research* **95**(D5), 5587–5595, *doi:*10.1029/JD095iD05p05587 (1990).

³⁷ Horrocks, L. A. et al. Open-path Fourier transform infrared spectroscopy of SO₂: An empirical error budget analysis, with implications for volcano monitoring. *Journal of Geophysical Research* **106**(D21) 27,647-27,659, *doi*:10.1029/2001JD000343 (2001).

³⁸ Oppenheimer, C., Lomakina, A. S., Kyle, P. R., Kingsbury, N. G. & Boichu, M. Pulsatory magma supply to a phonolite lava lake. *Earth and Planetary Science Letters* **284**, 392-398 (2009).

³⁹ Chase, M. W. NIST-JANAF thermochemical tables, *Journal of Physical and Chemical Reference Data*, Monograph 9, American Chemical Society/American Institute of Physics/National Institute of Standards and Technology, MD (1998).

⁴⁰ Martin, R. S., Mather, T. A. & Pyle, D. M. High-temperature mixtures of magmatic and atmospheric gases, *Geochemistry, Geophysics, Geosystems* 7, Q04006, *doi*:10.1029/2005GC001186 (2006).

⁴¹ Clift, R., Grace, J. R. & Weber, M. E. Stability of bubbles in fluidized beds. *Industrial & Engineering Chemistry Fundamentals* **13**, 45-51 (1974).

⁴² Figueroa-Espinoza, B. & Legendre, D. Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid. *Chemical Engineering Science* **65**, 6296-6309 (2010).

⁴³ Turner, J. S. *Buoyancy effects in fluids*. Cambridge University Press, Cambridge (1979).

⁴⁴ Alberti, M., Weber, R. & Mancini, M. Re-creating Hottel's emissivity charts for water vapor and extending them to 40 bar pressure using HITEMP-2010 data base. *Combustion and Flame* **169**, 141-153 (2016).

