20 research outputs found
Adoption of an “Open” Envelope Conformation Facilitating CD4 Binding and Structural Remodeling Precedes Coreceptor Switch in R5 SHIV-Infected Macaques
A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIVSF162P3N-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more “open” envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an “open” envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4low cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch
Paleoclimatic record from Chumbur-Kosa section in Sea of Azov region since Marine Isotope Stage 11
Napabucasin, a novel inhibitor of STAT3, inhibits growth and synergises with doxorubicin in diffuse large B-cell lymphoma
Loess Records
Loess is aeolian sediment, dominated by silt-sized particles, that is identifiable in the field as a distinct sedimentary body. It covers a significant portion of the land surface of the Earth and as such constitutes one of the most important archives of long-term dust deposition. Large tracts of loess cover Europe, Asia, South America, and North America, and smaller loess bodies are found covering parts of Africa, the Middle East, New Zealand, and Australia. Loess thickness, particle size, and carbonate content decrease downwind from sources, trends that are powerful tools for reconstructing paleowinds. Many loess sections consist of relatively thick deposits of mostly unaltered sediment with intercalated paleosols. Paleosols represent periods of landscape stability when loess deposition ceased or at least slowed significantly. Studies from several continents show that loess in most regions was deposited during glacial periods and paleosols formed during interglacial and interstadial periods
