28 research outputs found

    11β-HSD1 contributes to age-related metabolic decline in male mice

    Get PDF
    The aged phenotype shares several metabolic similarities with that of circulatory glucocorticoid excess (Cushing’s syndrome), including type 2 diabetes, obesity, hypertension, and myopathy. We hypothesise that local tissue generation of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts 11-dehydrocorticosterone to active corticosterone in rodents (corticosterone to cortisol in man), plays a role in driving age-related chronic disease. In this study, we have examined the impact of ageing on glucocorticoid metabolism, insulin tolerance, adiposity, muscle strength, and blood pressure in both wildtype (WT) and transgenic male mice with a global deletion of 11β-HSD1 (11β-HSD1−/−) following 4 months high-fat feeding. We found that high fat-fed 11β-HSD1−/− mice were protected from age-related glucose intolerance and hyperinsulinemia when compared to age/diet-matched WTs. By contrast, aged 11β-HSD1−/− mice were not protected from the onset of sarcopenia observed in the aged WTs. Young 11β-HSD1−/− mice were partially protected from diet-induced obesity; however, this partial protection was lost with age. Despite greater overall obesity, the aged 11β-HSD1−/− animals stored fat in more metabolically safer adipose depots as compared to the aged WTs. Serum analysis revealed both WT and 11β-HSD1−/− mice had an age-related increase in morning corticosterone. Surprisingly, 11β-HSD1 oxo-reductase activity in the liver and skeletal muscle was unchanged with age in WT mice and decreased in gonadal adipose tissue. These data suggest that deletion of 11β-HSD1 in high fat-fed, but not chow-fed, male mice protects from age-related insulin resistance and supports a metabolically favourable fat distribution

    25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression

    Get PDF
    Age-associated decline in muscle function represents a significant public health burden. Vitamin D-deficiency is also prevalent in aging subjects, and has been linked to loss of muscle mass and strength (sarcopenia), but the precise role of specific vitamin D metabolites in determining muscle phenotype and function is still unclear. To address this we quantified serum concentrations of multiple vitamin D metabolites, and assessed the impact of these metabolites on body composition/muscle function parameters, and muscle biopsy gene expression in a retrospective study of a cohort of healthy volunteers. Active serum 1,25-dihydroxyvitamin D3 (1α,25(OH)2D3), but not inactive 25-hydroxyvitamin D3 (25OHD3), correlated positively with measures of lower limb strength including power (rho = 0.42, p = 0.02), velocity (Vmax, rho = 0.40, p = 0.02) and jump height (rho = 0.36, p = 0.04). Lean mass correlated positively with 1α,25(OH)2D3 (rho = 0.47, p = 0.02), in women. Serum 25OHD3 and inactive 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) had an inverse relationship with body fat (rho = -0.30, p = 0.02 and rho = -0.33, p = 0.01, respectively). Serum 25OHD3 and 24,25(OH)2D3 were also correlated with urinary steroid metabolites, suggesting a link with glucocorticoid metabolism. PCR array analysis of 92 muscle genes identified vitamin D receptor (VDR) mRNA in all muscle biopsies, with this expression being negatively correlated with serum 25OHD3, and Vmax, and positively correlated with fat mass. Of the other 91 muscle genes analysed by PCR array, 24 were positively correlated with 25OHD3, but only 4 were correlated with active 1α,25(OH)2D3. These data show that although 25OHD3 has potent actions on muscle gene expression, the circulating concentrations of this metabolite are more closely linked to body fat mass, suggesting that 25OHD3 can influence muscle function via indirect effects on adipose tissue. By contrast, serum 1α,25(OH)2D3 has limited effects on muscle gene expression, but is associated with increased muscle strength and lean mass in women. These pleiotropic effects of the vitamin D ‘metabolome’ on muscle function indicate that future supplementation studies should not be restricted to conventional analysis of the major circulating form of vitamin D, 25OHD3

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Regulation of lipid metabolism by glucocorticoids and 11β-HSD1 in skeletal muscle.

    No full text
    The prevalences of insulin resistance and type 2 diabetes mellitus are rising dramatically, and, as a consequence, there is an urgent need to understand the pathogenesis underpinning these conditions to develop new and more efficacious treatments. We have tested the hypothesis that glucocorticoid (GC)-mediated changes in insulin sensitivity may be associated with changes in lipid flux. Furthermore, prereceptor modulation of GC availability by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) may represent a critical regulatory step. Dexamethasone (DEX) decreased lipogenesis in both murine C2C12 and human LHC-NM2 myotubes. Inactivating p-Ser-79/218 of acetyl-CoA carboxylase 1/2 and activating p-Thr-172 of AMP-activated protein kinase were both increased after DEX treatment in C2C12 myotubes. In contrast, DEX increased β-oxidation. Selective 11β-HSD1 inhibition blocked the 11-dehydrocorticosterone (11DHC)-mediated decrease in lipogenic gene expression and increase in lipolytic gene expression. Lipogenic gene expression was decreased, whereas lipolytic and β-oxidative gene expression increased in corticosterone (CORT)- and 11DHC-treated wild-type mice and CORT (but not 11DHC)-treated 11β-HSD1(-/-) mice. Furthermore, CORT- and 11DHC-treated wild-type mice and CORT (but not 11DHC)-treated 11β-HSD1(-/-) mice had increased p-Ser-79/218 acetyl-CoA carboxylase 1/2, p-Thr-172 AMP-activated protein kinase and intramyocellular diacylglyceride content. In summary, we have shown that GCs have potent actions on intramyocellular lipid homeostasis by decreasing lipid storage, increasing lipid mobilization and utilization, and increasing diacylglyceride content. It is plausible that dysregulated intramyocellular lipid metabolism may underpin GC-induced insulin resistance of skeletal muscle

    11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess.

    No full text
    The adverse metabolic effects of prescribed and endogenous glucocorticoid (GC) excess, Cushing syndrome, create a significant health burden. We found that tissue regeneration of GCs by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), rather than circulating delivery, is critical to developing the phenotype of GC excess; 11β-HSD1 KO mice with circulating GC excess are protected from the glucose intolerance, hyperinsulinemia, hepatic steatosis, adiposity, hypertension, myopathy, and dermal atrophy of Cushing syndrome. Whereas liver-specific 11β-HSD1 KO mice developed a full Cushingoid phenotype, adipose-specific 11β-HSD1 KO mice were protected from hepatic steatosis and circulating fatty acid excess. These data challenge our current view of GC action, demonstrating 11β-HSD1, particularly in adipose tissue, is key to the development of the adverse metabolic profile associated with circulating GC excess, offering 11β-HSD1 inhibition as a previously unidentified approach to treat Cushing syndrome

    Mortality in patients with Cushing's disease more than 10 years after remission: A multicentre, multinational, retrospective cohort study

    Get PDF
    Background: No agreement has been reached on the long-term survival prospects for patients with Cushing's disease. We studied life expectancy in patients who had received curative treatment and whose hypercortisolism remained in remission for more than 10 years, and identified factors determining their survival. Methods: We did a multicentre, multinational, retrospective cohort study using individual case records from specialist referral centres in the UK, Denmark, the Netherlands, and New Zealand. Inclusion criteria for participants, who had all been in studies reported previously in peer-reviewed publications, were diagnosis and treatment of Cushing's disease, being cured of hypercortisolism for a minimum of 10 years at study entry, and continuing to be cured with no relapses until the database was frozen or death. We identified the number and type of treatments used to achieve cure, and used mortality as our primary endpoint. We compared mortality rates between patients with Cushing's disease and the general population, and expressed them as standardised mortality ratios (SMRs). We analysed survival data with multivariate analysis (Cox regression) with no corrections for multiple testing. Findings: The census dates on which the data were frozen ranged from Dec 31, 2009, to Dec 1, 2014. We obtained data for 320 patients with 3790 person-years of follow-up from 10 years after cure (female:male ratio of 3:1). The median patient follow-up was 11·8 years (IQR 17-26) from study entry and did not differ between countries. There were no significant differences in demographic characteristics, duration of follow-up, comorbidities, treatment number, or type of treatment between women and men, so we pooled data from both sexes for survival analysis. 51 (16%) of the cohort died during follow-up from study entry (10 years after cure). Median survival from study entry was similar for women (31 years; IQR 19-38) and men (28 years; 24-42), and about 40 years (IQR 30-48) from remission. The overall SMR for all-cause mortality was 1·61 (95% CI 1·23-2·12; p=0·0001). The SMR for circulatory disease was increased at 2·72 (1·88-3·95; p<0·0001), but deaths from cancer were not higher than expected (0·79, 0·41-1·51). Presence of diabetes, but not hypertension, was an independent risk factor for mortality (hazard ratio 2·82, 95% CI 1·29-6·17; p=0·0095). We noted a step-wise reduction in survival with increasing number of treatments. Patients cured by pituitary surgery alone had long-term survival similar to that of the general population (SMR 0·95, 95% CI 0·58-1·55) compared with those who were not (2·53, 1·82-3·53; p<0·0001). Interpretation: Patients with Cushing's disease who have been in remission for more than 10 years are at increased risk of overall mortality compared with the general population, particularly from circulatory disease. However, median survival from cure is excellent at about 40 years of remission. Treatment complexity and an increased number of treatments, reflecting disease that is more difficult to control, appears to negatively affect survival. Pituitary surgery alone is the preferred treatment to secure an optimum outcome, and should be done in a centre of surgical excellence

    Pheochromocytoma is characterized by catecholamine-mediated myocarditis, focal and diffuse myocardial fibrosis, and myocardial dysfunction

    No full text
    © 2016 American College of Cardiology Foundation.Background Pheochromocytoma is associated with catecholamine-induced cardiac toxicity, but the extent and nature of cardiac involvement in clinical cohorts is not well-characterized. Objectives This study characterized the cardiac phenotype in patients with pheochromocytoma using cardiac magnetic resonance (CMR). Methods A total of 125 subjects were studied, including patients with newly diagnosed pheochromocytoma (n = 29), patients with previously surgically cured pheochromocytoma (n = 31), healthy control subjects (n = 51), and hypertensive control subjects (HTN) (n = 14), using CMR (1.5-T) cine, strain imaging by myocardial tagging, late gadolinium enhancement, and native T1 mapping (Shortened Modified Look-Locker Inversion recovery [ShMOLLI]). Results Patients who were newly diagnosed with pheochromocytoma, compared with healthy and HTN control subjects, had impaired left ventricular (LV) ejection fraction (&lt;56% in 38% of patients), peak systolic circumferential strain (p &lt; 0.05), and diastolic strain rate (p &lt; 0.05). They had higher myocardial T1 (974 ± 25 ms, as compared with 954 ± 16 ms in healthy and 958 ± 23 ms in HTN subjects; p &lt; 0.05), areas of myocarditis (median 22% LV with T1 &gt;990 ms, as compared with 1% in healthy and 2% in HTN subjects; p &lt; 0.05), and focal fibrosis (59% had nonischemic late gadolinium enhancement, as compared with 14% in HTN subjects). Post-operatively, impaired LV ejection fraction typically normalized, but systolic and diastolic strain impairment persisted. Focal fibrosis (median 5% LV) and T1 abnormalities (median 12% LV) remained, the latter of which may suggest some diffuse fibrosis. Previously cured patients demonstrated abnormal diastolic strain rate (p &lt; 0.001), myocardial T1 (median 12% LV), and small areas of focal fibrosis (median 1% LV). LV mass index was increased in HTN compared with healthy control subjects (p &lt; 0.05), but not in the 2 pheochromocytoma groups. Conclusions This first systematic CMR study characterizing the cardiac phenotype in pheochromocytoma showed that cardiac involvement was frequent and, for some variables, persisted after curative surgery. These effects surpass those of hypertensive heart disease alone, supporting a direct role of catecholamine toxicity that may produce subtle but long-lasting myocardial alterations
    corecore