1,942 research outputs found
Zener transitions between dissipative Bloch bands. II: Current Response at Finite Temperature
We extend, to include the effects of finite temperature, our earlier study of
the interband dynamics of electrons with Markoffian dephasing under the
influence of uniform static electric fields. We use a simple two-band
tight-binding model and study the electric current response as a function of
field strength and the model parameters. In addition to the Esaki-Tsu peak,
near where the Bloch frequency equals the damping rate, we find current peaks
near the Zener resonances, at equally spaced values of the inverse electric
field. These become more prominenent and numerous with increasing bandwidth (in
units of the temperature, with other parameters fixed). As expected, they
broaden with increasing damping (dephasing).Comment: 5 pages, LateX, plus 5 postscript figure
Can surface flux transport account for the weak polar field in cycle 23?
To reproduce the weak magnetic field on the polar caps of the Sun observed
during the declining phase of cycle 23 poses a challenge to surface flux
transport models since this cycle has not been particularly weak. We use a
well-calibrated model to evaluate the parameter changes required to obtain
simulated polar fields and open flux that are consistent with the observations.
We find that the low polar field of cycle 23 could be reproduced by an increase
of the meridional flow by 55% in the last cycle. Alternatively, a decrease of
the mean tilt angle of sunspot groups by 28% would also lead to a similarly low
polar field, but cause a delay of the polar field reversals by 1.5 years in
comparison to the observations.Comment: 9 pages, 8 figures, Space Science Reviews, accepte
Integrating fluctuations into distribution of resources in transportation networks
We propose a resource distribution strategy to reduce the average travel time
in a transportation network given a fixed generation rate. Suppose that there
are essential resources to avoid congestion in the network as well as some
extra resources. The strategy distributes the essential resources by the
average loads on the vertices and integrates the fluctuations of the
instantaneous loads into the distribution of the extra resources. The
fluctuations are calculated with the assumption of unlimited resources, where
the calculation is incorporated into the calculation of the average loads
without adding to the time complexity. Simulation results show that the
fluctuation-integrated strategy provides shorter average travel time than a
previous distribution strategy while keeping similar robustness. The strategy
is especially beneficial when the extra resources are scarce and the network is
heterogeneous and lowly loaded.Comment: 14 pages, 4 figure
Holstein polarons in a strong electric field: delocalized and stretched states
The coherent dynamics of a Holstein polaron in strong electric fields is
considered under different regimes. Using analytical and numerical analysis, we
show that even for small hopping constant and weak electron-phonon interaction,
the original discrete Wannier-Stark (WS) ladder electronic states are each
replaced by a semi-continuous band if a resonance condition is satisfied
between the phonon frequency and the ladder spacing. In this regime, the
original localized WS states can become {\em delocalized}, yielding both
`tunneling' and `stretched' polarons. The transport properties of such a system
would exhibit a modulation of the phonon replicas in typical tunneling
experiments. The modulation will reflect the complex spectra with
nearly-fractal structure of the semi-continuous band. In the off-resonance
regime, the WS ladder is strongly deformed, although the states are still
localized to a degree which depends on the detuning: Both the spacing between
the levels in the deformed ladder and the localization length of the resulting
eigenfunctions can be adjusted by the applied electric field. We also discuss
the regime beyond small hopping constant and weak coupling, and find an
interesting mapping to that limit via the Lang-Firsov transformation, which
allows one to extend the region of validity of the analysis.Comment: 10 pages, 13 figures, submitted to PR
Neutrino Halos in Clusters of Galaxies and their Weak Lensing Signature
We study whether non-linear gravitational effects of relic neutrinos on the
development of clustering and large-scale structure may be observable by weak
gravitational lensing. We compute the density profile of relic massive
neutrinos in a spherical model of a cluster of galaxies, for several neutrino
mass schemes and cluster masses. Relic neutrinos add a small perturbation to
the mass profile, making it more extended in the outer parts. In principle,
this non-linear neutrino perturbation is detectable in an all-sky weak lensing
survey such as EUCLID by averaging the shear profile of a large fraction of the
visible massive clusters in the universe, or from its signature in the general
weak lensing power spectrum or its cross-spectrum with galaxies. However,
correctly modeling the distribution of mass in baryons and cold dark matter and
suppressing any systematic errors to the accuracy required for detecting this
neutrino perturbation is severely challenging.Comment: 13 pages, 11 figures. Submitted to JCA
Localization of interacting electrons in quantum dot arrays driven by an ac-field
We investigate the dynamics of two interacting electrons moving in a
one-dimensional array of quantum dots under the influence of an ac-field. We
show that the system exhibits two distinct regimes of behavior, depending on
the ratio of the strength of the driving field to the inter-electron Coulomb
repulsion. When the ac-field dominates, an effect termed coherent destruction
of tunneling occurs at certain frequencies, in which transport along the array
is suppressed. In the other, weak-driving, regime we find the surprising result
that the two electrons can bind into a single composite particle -- despite the
strong Coulomb repulsion between them -- which can then be controlled by the
ac-field in an analogous way. We show how calculation of the Floquet
quasienergies of the system explains these results, and thus how ac-fields can
be used to control the localization of interacting electron systems.Comment: 7 pages, 6 eps figures V2. Minor changes, this version to be
published in Phys. Rev.
Subsurface Flows in and Around Active Regions with Rotating and Non-rotating Sunspots
The temporal variation of the horizontal velocity in subsurface layers
beneath three different types of active regions is studied using the technique
of ring diagrams. In this study, we select active regions (ARs) 10923, 10930,
10935 from three consecutive Carrington rotations: AR 10930 contains a
fast-rotating sunspot in a strong emerging active region while other two have
non-rotating sunspots with emerging flux in AR 10923 and decaying flux in AR
10935. The depth range covered is from the surface to about 12 Mm. In order to
minimize the influence of systematic effects, the selection of active and quiet
regions is made so that these were observed at the same heliographic locations
on the solar disk. We find a significant variation in both components of the
horizontal velocity in active regions as compared to quiet regions. The
magnitude is higher in emerging-flux regions than in the decaying-flux region,
in agreement with earlier findings. Further, we clearly see a significant
temporal variation in depth profiles of both zonal and meridional flow
components in AR 10930, with the variation in the zonal component being more
pronounced. We also notice a significant influence of the plasma motion in
areas closest to the rotating sunspot in AR 10930 while areas surrounding the
non-rotating sunspots in all three cases are least affected by the presence of
the active region in their neighborhood.Comment: Solar Physics (in press), includes 11 figure
Triggering an eruptive flare by emerging flux in a solar active-region complex
A flare and fast coronal mass ejection originated between solar active
regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in
front of the leading sunspot of the trailing region 11515. Analyzing the
evolution of the photospheric magnetic flux and the coronal structure, we find
that the flux emergence triggered the eruption by interaction with overlying
flux in a non-standard way. The new flux neither had the opposite orientation
nor a location near the polarity inversion line, which are favorable for strong
reconnection with the arcade flux under which it emerged. Moreover, its flux
content remained significantly smaller than that of the arcade (approximately
40 %). However, a loop system rooted in the trailing active region ran in part
under the arcade between the active regions, passing over the site of flux
emergence. The reconnection with the emerging flux, leading to a series of jet
emissions into the loop system, caused a strong but confined rise of the loop
system. This lifted the arcade between the two active regions, weakening its
downward tension force and thus destabilizing the considerably sheared flux
under the arcade. The complex event was also associated with supporting
precursor activity in an enhanced network near the active regions, acting on
the large-scale overlying flux, and with two simultaneous confined flares
within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and
Stellar Flares. 25 pages, 12 figure
Metagenomic analysis of the saliva microbiome with merlin
In recent years, metagenomics has demonstrated to play an essential role on the study of the microorganisms that live in microbial communities, particularly those who inhabit the human body. Several bioinformatics tools and pipelines have been developed for the analysis of these data, but they usually only address one topic: to identify the taxonomic composition or to address the metabolic functional profile. This work aimed to implement a computational framework able to answer the two questions simultaneously. Merlin, a previously released software aiming at the reconstruction of genome-scale metabolic models for single organisms, was extended to deal with metagenomics data. It has an user-friendly and intuitive interface, being suitable for those with limited bioinformatics skills. The performance of the tool was evaluated with samples from the Human Microbiome Project, particularly from saliva. Overall, the results show the same patterns reported before: while the pathways needed for microbial life remain relatively stable, the community composition varies extensively among individuals
- …
