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Abstract. We study whether non-linear gravitational effects of rekitrinos on the development
of clustering and large-scale structure may be observableglak gravitational lensing. We compute
the density profile of relic massive neutrinos in a sphencatiel of a cluster of galaxies, for several
neutrino mass schemes and cluster masses. Relic neutddoa small perturbation to the mass
profile, making it more extended in the outer parts. In ppleithis non-linear neutrino perturbation
is detectable in an all-sky weak lensing survey such as EDQGiyl averaging the shear profile of
a large fraction of the visible massive clusters in the uisi@eor from its signature in the general
weak lensing power spectrum or its cross-spectrum withxgzga However, correctly modeling the
distribution of mass in baryons and cold dark matter and ieg3ing any systematic errors to the
accuracy required for detecting this neutrino perturlvaisoseverely challenging.
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1 Introduction

The discovery of neutrino flavour conversion of solar, atphesic, reactor and accelerator neutrinos
implies that at least two of the three light neutrinos aresivas The sum of the neutrino masses
is still unknown. It is constrained from above €V) by tritium beta decay end point data and by
cosmological data, and from below (0.05 eV) by neutrinol@ein data. The neutrino mass squared
differences are precisely measured by reactor and actmlesperiments,1]

Am3, = (7.6 £0.2) x 107°eV? | (1.1)

Am3, = (2.440.1) x 1073eV? . (1.2)

However, the neutrino mass hierarchy, or whether the twérines with the smallest mass difference
are heavier or lighter than the other one, is still unknowacét forecasts of galaxy clustering have
included the neutrino mass ordering in addition to the towltrino mass among the free model
parameters that are considered, and show that future susteyld reach the sensitivity required to
explore most of the allowed range of the total neutrino masista determine the neutrino hierarchy
[2].

Neutrino masses are usually included in the list of pararseiBthe standard model of cos-
mology in the linear regime, but this has rarely been doné&énnionlinear case. Massive neutrinos
suppress the small scale matter power spectrum due to grge thermal velocities, making the
shape of the total mass power spectrum a potential probautdmz masses. On scales much smaller
than the free-streaming distance of neutrinos, the relatiyppression i3],

APk)| .
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whereQ, h? = (X;m;)/(93.14 eV).

Apart from this linear effect, massive neutrinos are algueeted to cluster around gravitation-
ally collapsed dark matter haloes as their streaming vi#gcare reduced and become comparable
to the velocity dispersions of the halos, thereby modifying dark matter halo total mass density
profile. Previous work has studied this non-linear neutdhstering i—9]. Here, we present a new



calculation with updated parameters and a more realista iadel. We also examine weak grav-
itational lensing as a method for an astrophysical deteatiothe cosmic relic neutrinos. We find
that weak gravitational lensing all-sky surveys, such asplanned EUCLID mission, may detect
the presence of the neutrino perturbation in the average dessity profile of clusters of galaxies,
although systematic uncertainties related to the impatiaofons on the redistribution of the total
mass profile are likely to be severe.

In Section 2 we describe our method for computing the religtni@o clustering within dark
matter haloes, and the results are shown in Section 3. 8ettiiscusses how the effect of relic
neutrino clustering within dark matter haloes can be deteby weak lensing.

We use the\CDM flat model withQ2,; = 0.27 and Hubble constarffy, = 70 kms~! Mpc~*
throughout the paper, with a power spectrum normalizatipa- 0.9 and primordial slopes = 0.96.

2 Numerical method

This section describes the method we use to compute thémedensity profile in a spherical model
of the dark matter halo.

2.1 Mass density profile

In this study we consider neutrinos as test particles mowing gravitational potential determined
from a spherical model of the distribution of the cold darkitea which dominates the total mass in
clusters. Our model adopts the numerical fits that have bb&ined from cosmological numerical
simulations of the formation of halos from cold dark mati&e calculate a density profile including
the inner virialized region and the outer infall region of @dby smoothly joining two different
pieces. The first piece is the NFW profilQ], valid inside the virial radius. The second piece is
obtained starting from the average initial density pertidn around a halo in a Gaussian random
field, and evolving it in the non-linear regime by assuminpgesijtal gravitational collapse without
shell-crossing 11, 12]. The two pieces are joined together at an assumed epochsef\vation and
at a certain radius, which is determined by requiring cavitynin the density profile (the derivative
of the density profile is allowed to be discontinuous at threfion point).

The NFW profile has two parameters, the halo mass and its obatien parameter, and is
given by

_ Ps
pNFW(T) - (T/T’S)(l 4 7"/7"'5)2 ’ (21)

where the concentration parameteris- r,/rs, and the virial radius-, is obtained from the halo
mass as A
7
M = = pelr . (2.2)
Here, p. is the critical density of the universe at redshift z, akgdis the halo mean density within
the virial radius in units of the critical density, which fafflat universe with a cosmological constant

is given by [L3]:

A, = 187 + 82z — 3922 | (2.3)
r=Q(z)-1, (2.4)
() = — Sm+2)° 2.5)

Qn(1+2)3+Q



The NFW profile is a fit to the density profile of the halo obtairie numerical simulations for the
virialized region. Outside this region, we use instead asitmrofile obtained from the mean mass
distribution around any mass concentration, in a Gausséd With power spectrunP (k) [12].
Let the rms mass fluctuation within a sphere of radils o),(r). The average linear overdensity

09 = vops(r2) Within a radiusre, under the condition that the mean linear overdensity withe
smaller radius is equal tod; = v10,/(71), can be calculated as = ~,2v1, Where

B 9 > Ji(kri) ] [ (krs)
o 27‘(20']\/[(7“1)0']\/[(7“2)/0 dk P(k) |: T T9 :| ’

wherej; is the spherical Bessel function. We use this equation taiokite average linear overdensity
profile around a halo.

The outer halo density profile beyond a certain radigg which is to be determined by a
matching condition that is specified below, is then cal@adats follows: we start with a guessed value
of r o with a mean interior overdens@co in the NFW profile. The corresponding initial raditg is
obtained from(1 + 8 40) = (ri0/70)>. Assuming the spherical collapse model with no shell-éngss
(i.e., a constant interior mass), we calculate the requisechpolated linear overdensityy(r;o) to
produce the final overdensit_ggco(rfo). We then evaluate the linear mean overdenaity;) at any
radiusr; > r;0 with equation 2.6), using the power spectrum of Eisenstein & Huf][ with the
parameters?,, = 0.27, Qy = 0.73, 0s = 0.9, ngy = 0.96 andh = 0.7. Finally, using again the
spherical collapse model, we compute the final radiusorresponding to each initial radiutg and
its linear overdensity; (r;). The non-linear density profile is

2
T d’l“i
p(rs) = pm (—) dry (2.7)

Y12

(2.6)

where the mean density of the universejs= Q(z)pc.

We choose the radiug at which the inner NFW and the outer infall density profile mached
by requiring continuity of the mass density profile. The rhatg point that results from this con-
tinuity requirement at a specified redshift is located incalt calculations between 1.5 and 3 times
the virial radius. In Figuréd, the density profile generated using this procedure isquldir a dark
matter halo of masa/ = 10"~ M, atz = 0.4 (red solid line). The dashed line shows the extrap-
olated NFW profile beyond the matching point. At large radthe mean density profile obviously
approaches the mean density of the universe. The figure atsessthe profiles of other halos at
a higher redshift with the average mass of the most massogepitor of the halo at = 0.4, as
discussed below. The vertical dotted lines indicate thdéipasof the virial radius of each halo.

2.2 Dark matter halo evolution

Modeling the orbits of relic neutrinos in a cluster halo riegs the gravitational potential of the
halo to be specified as a function of time. To obtain a realistbdel for a typical halo, we use the
results of [L5] to obtain a mass of the halo as a function of time over itsrertistory of accretion.
Obviously, there is a large dispersion in the accretiorohysof a halo and therefore in the evolution
of its potential well, but we take an average history for theshmassive progenitor as a typical case
to calculate the orbits of the neutrinos in our spherical ehod

We use the empirical formula ofL§], obtained from a numerical fit to the results of N-body
cosmological simulations, to calculate the mass and cdraten parameter of the most massive
progenitor of our halo of mass/, at the final redshift, for each earlier epoch at redshift> z.
This is done for 100 values of the redshiftdistributed logarithmically between= z; andz = 10.
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Figure 1. Red solid line shows the adopted mean dark matter halo tgemsifile at redshift: = 0.4 for

Ma = 10"h~' M. The inner profile is the NFW model, matched with the outeffigr@omputed from

the average spherical perturbation around a halo evolvedrding to spherical collapse. The dashed line
shows the extrapolation of the NFW model beyond the matcpwoigt. The green and blue lines show the
density profile of the most massive progenitor at redshifts 1.3 andz = 3.5, respectively, with masses
(Ma) 2.1 x 10**h=1 M, and8.5 x 102h~1 M. The density profiles of these halos are not continuous at the
matching point, and their outer profile is determined by ntagservation as required for assembling the halo
atz = 0.4. The vertical dotted lines indicate the position of thealiradius for the three halos. The matching
point chosen for continuity generally occurs around twieeirial radius.

As this work was being carried out, we initially computed tensity profile of the progenitor
halo of mass\/;,(z) at each redshift with the same method as for the final halo at redshifichoos-
ing a matching radius and requiring continuity with the ager external density profile. However,
this method does not conserve the total mass because it db&ska into account the requirement
that the mass\/; that is assembled into the final halogt must be present in the external region
around the progenitor halos within the shell that will figadbllapse onto the halo at redshift. In
other words, the density profile around a progenitor halo a§si/, (=) is not equal to the average
one as obtained from equatioB.§), but is modified by the condition that a halo of mag$ must
be assembled at redshiff. Therefore, the density profile of the progenitor halo is patad by
fixing the matching point to the same fixed multiple of the aliniadiusr, as for the final halo at
zf, mr0(2) = rr0(2f) % ro(2)/r0(2¢), and tracing back in time the position of each sphericallshel
around the halo. At each step in redshift (backwards in titie) progenitor halo decreases its mass
within r¢(z) by an amount M, and a new spherical shell is added with m&a$ with a radius
equal tors(z). All the spherical shells are traced back in time using theespal collapse model
with no shell-crossing. This results in the density profgéswn in Figurel for two examples of
the progenitor halos, at = 1.3 (with massM = 2.1 x 10'* h~'M.) and atz = 3.5 (with mass
M = 8.5 x 10'2 h~1M,,). The density profile is no longer continuous at the matclpioigt, but this
does not cause any problem.

We have found that correctly computing the evolution of theserved external mass distribu-
tion around the halo of a cluster is important: if one usetesr$ the mean density profile around a
halo progenitor, the final result for the neutrino density ba underestimated by more than a factor
of two.

The evolving potential of the halo is computed by interdotafrom the mass profiles calculated



at 100 values of the redshift as the orbits of test particles representing the neutanesntegrated.

2.3 Neutrino orbits

The initial phase space distribution of neutrinos is debeeth by their state of thermal equilibrium
reached in the early universe with the primordial plasnea, ihe Fermi-Dirac distribution for highly
relativistic particles,

8 p2dp
(2mh)3 eP/T 41

The neutrino temperature, evolving &s= Ty(1 + z), is related to the photon temperatufg, as
To = (4/11)Y3T0 ~ 1.9K.

The orbits followed by neutrinos in our time-dependent sighé potential depend on three
orbital parameters: the initial radius and momentum, aredahgular momentum of the neutrino.
To compute the neutrino density profile, this three-paramspace of neutrino orbits needs to be
sampled densely enough to compute their average spattabdiion as a function of time. For
this purpose, we divide the initial radius, momentum andutargmomentum into several bins, and
compute a neutrino orbit for each binned value of the thrembkes, starting the orbits af = 10.
This three-dimensional phase-space grid is construckéagtarticular care to resolve the particles
reaching close to the center of the halo, which are at snmisillinadius or small angular momentum.

The grid is constructed using 10000 bins in radius from®@,19,, distributed ag; = 7,,,4.-(i/10000)?,
wherer,, ., is large enough to ensure convergence of the final neutrinsityeprofile out to a final
radius of at least 30 Mpc. Momentum bins are similarly seppy= ppq.(j/500)?, with 500 bins,
wherep,... = 0.005(1 + z;) eV, sufficient to sample particles out to the largest momemaaing
any significant contribution. Finally, the angular momentis sampled from O td.;,q, = r;p; using
200 bins distributed as

f(p)dp = (2.8)

= (3) ()" (k< 100)
(2.9)

=7~ (5) (5580)° (& > 100),

wheref, is the angle subtended between the initial momentum andgadithe particle. Herey is a
parameter to control the sampling of particles with low dagmomentum, which are responsible for
the shape of the density profile in the inner parts. Typic#tlisanges between 1.5 to 5 depending on
both neutrino and dark matter halo mass. At each three-dilmeal bin, neutrino orbits are computed
by solving the equation

d*r L 0¢(r,1)

WS o
wherelL is the conserved angular momentum per unit of masspaathe time-dependent Newtonian
gravitational potential, computed from the dark mattersityrprofile specified in Section 2.1. The
contribution of each neutrino particle to the final neutrolensity profile as a function of time is
counted as a spherical shell of radit{) and mass proportional to the weight of the bin at radijys
momentuny; and angle);, in the phase space distribution,

(2.10)

. Tig1l Dj+1 de
mbIF o / r? dr/ _Pa X || cos @ — cos Oyl . 2.11
P . " /T (2) +1 H k+1 k” ( )

The final neutrino density profile is obtained by adding thessnaf all interior shells at any radius
and time. Equation210 is solved for each particle with a Runge-Kutta fourth-oriiéegrator with
variable stepsize.
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Figure 2. Neutrino density profiles at = 0.4, shown as the ratio to the mean neutrino density, for a haksma
of 1015 h=1 M, (left panel) andl0** h=1 M, (right panel), and for the indicated neutrino masses. Tlse ca
where the NFW profile is used at all radii (with a suppressetsiig at large radius, see Figutpis shown for
one case in the left panel as a black line.

3 Neutrino density profiles

We now present the results for the spherical neutrino depsitfiles. We will discuss four neutrino
mass schemes: a) three neutrinos with= 0.3 eV (labelled 0.3 eV), b) three neutrinos with m=0.15
eV (labelled 0.15 eV), c¢) two neutrinos with 0.05 eV and onestess neutrino (labelled IH 0.05eV)
and d) one neutrino with 0.05 eV and two massless neutrimbel{fed NH 0.05eV). We neglect the
mass squared differences in schemes a and b and the smaBauoased difference in schemes ¢ and
d. This approximation is justified because the masses ofd@h&inos that we consider to have equal
mass differ by less than 1 % (scheme a) , 5% (scheme b), andc2fnfe c). In scheme c and d, the
neutrinos that we neglect have masses smaller than 0.0hd\¢sawe shall see their contribution to
the total neutrino mass profile is indeed negligible. Witls &#pproximation, neutrino density profiles
need to be computed only for masses of 0.3, 0.15 and 0.05 eV.

Neutrino density profiles are shownzat 0.4 in Figure2 in units of the mean cosmic neutrino
density, for halos of masg)!'® b= M, (left) and10'* h=!1 M, (right), and for neutrino masses of
0.05, 0.15 and 0.3 eV. The neutrino overdensity increas#s lwath neutrino mass and halo mass,
as the ratio of the halo velocity dispersion to the neutrimermal velocities increases. The size of
the core of the neutrino distribution decreases rapidiwhis ratio owing to phase space density
conservation. The random oscillations at small radius aeetd numerical noise arising from the
number of particles representing spherical shells in ouukition.

The left panel also shows, for a neutrino mass of 0.3 eV, tise oh the NFW mass profile
extended over all radii. This results in a reduced dens#yseen in Figurd. The reduction of the
depth of the potential well in this model reduces the neatdansity.

In Figure3, the ratio of the neutrino to the dark matter mass densitfiler@, /ppas, is plotted
for a halo of mass0'® h=' M, atz = 0.4, for neutrino masses of 0.3, 0.15 and 0.05 eV. Schemes a
and b are used for the two heavier masses (i.e., the red aed gueves show the density computed
for one neutrino family multiplied by 3), and schemes c andtifie lighter mass (the cyan curve is
for one neutrino family, and the blue curve is for two). A cbarof slope occurs at a radius close
to 5 Mpc, due to the change of slope in the mass density prdfileeamatching point between the
NFW and the outer infall model of the average density pedtiob. Near a radius of 2 Mpc, a feature
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Figure 3. The neutrino to dark matter density profiles ratiazat 0.4 for the indicated neutrino masses, in a
halo of mass 010> h=' M.

is present that is particularly strong for the largest neatmass and becomes weak as the neutrino
mass is decreased. This is the result of a caustic, a speeiiré of spherical collapse. For per-
fectly cold patrticles, a true caustic (where the densityobses formally infinite) would appear at this
radius, at which the single infalling stream of particlessaie the caustic changes to a superposi-
tion of three streams inside the caustic, owing to the gdagithat are turning around in their first
orbit after going through the halo center. The caustic isgasingly smoothed out for neutrinos as
their primordial velocity dispersion increases (i.e., tieaitrino mass decreases), or as the halo mass
decreases. In practice, this caustic feature is presentimm@ spherically symmetric system. Real
clusters collapsing from random initial density pertuitias have caustics that are highly irregular
and occur at variable radii, influenced by their internalstulzture and non-sphericity, and which are
largely washed out when averaging over many clusters (sge[¥6, 17]). Note also that a caustic
should of course also be present in the Cold Dark Matter inheerspal model, which we are not
taking into account here because we are using a simple analgtiel for the mass profile. The Cold
Dark Matter would have its caustic washed out only by theceffef substructure and non-sphericity,
while the neutrino caustic is further washed out by theahitiermal velocities.

Comparing our calculations with previously published tessuve find that we reproduce the
results by p] when using their dark matter halo (NFW) density profile aatbrevolution model, but
we do not reproduce those dof][(see B] for a discussion of this difference). As we have shown,
the NFW halo profile extrapolated to large radius that is Usedb] underestimates the neutrino
contribution to the profile at large radius. Our model alsprioves that of$] on the cluster evolution,
by including the mean redshift dependence of the halo piitayamass and concentration parameter,
instead of a constant halo mass during the accretion hisigegd in p], and by computing also the
mean spherical evolution of the density profile externah#halo.

Finally, in Figure4 we plot the neutrino surface overdensity, which is impdrfanour lensing
calculations in the next section,

EV(R) = /oo [pl,(’l“) —pu] dx (31)

wherer? = 22 4+ R?, Ris the projected radius on the sky anis the dummy variable for integration
along the line-of-sight, ang, is the mean neutrino density, for the same cases of neutrass,nand
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Figure 4. Neutrino surface over-density profiles for neutrinos wiitt indicated masses, at= 0.4 andz = 1.
Left panel is for halo mask)!® h—! M, and right panel fot0'* A= M.

at redshifts: = 0.4 andz = 1. The left panel is for a halo mag8'® b= M, and the right panel for
10" h=' M. The same main effect is clearly seen as previously: therealies of the neutrinos is
reduced, and their central overdensity increases, as thertasss or neutrino mass increases.

4 Neutrino detection with weak lensing

We now consider the possibility of detecting the pertudratiaused by neutrinos on the radial density
profile of a cluster using weak gravitational lensing. Irsteection we consider the idealized case
where weak lensing can be measured for a large number oédusith a perfectly known selection
function, with statistical errors declining as the squat 0f the number of clusters.

We summarize first the basic concepts of weak gravitati@mradihg. The distortion of images
behind an extended gravitational lens is determined byuface density of the lens at every point in
projection on the skyy.. The convergence is = ¥ /3.,.;;, whereX.,.;; is the critical surface density,
which depends on the angular diameter distances to the Ig&fst6 the sourceld,), and from the
lens to the sourcelj,):

2Dy
Ecrit = AnG DD
77 1s/]
In general, a spherical source acquires an elliptical shétpebeing lensed, with axis rati@ — x —
v)/(1 — k + 7y), where~ is the shear (for reviews see, e.d.8[19]). In a spherical lens, the shear is
given by

(4.1)

V(R) = K(R) — K(R) , (4.2)

wherer(R) is the average convergence within a projected raétius

R(R) = — / YRR (R (4.3)

=,
The weak lensing limit is the case when« 1 andvy < 1, in which case the ellipticity acquired by
the source ig ~ 2.

For an arbitrary mass distribution without spherical syrtrgpeve can choose any center we
may wish and consider the values of the convergence and shieeaged on circles of radiu’g
around the chosen center. The averaged quanti) is also obtained by averaging the convergence



within a radiusR. Equation 4.2) is then just as valid for an arbitrary mass distributiorgvided that
we definex(R) andv(R) by averaging over circles of radius(or, in other words, circularly rotating
the lens around the chosen center and averaging over albf@maggles of rotation).

The quantityy(R) is the one we can directly measure from the shapes of thedegaaxies,
and the density profile of the cluster lens can be reconstiuay the use of inversion methodX]].
A very useful particular case is obtained by consideringkegral

2 dR
—2v(R) = K(R1) — R(R2) = C1a . (4.4)
R R
This equality is easily verified from equations?) and @.3). Hence, we can measudéferences in
the projected mass at two different raélij and R,, from the directly observable shear in the annulus
between the two radii.
The shear cannot be measured exactly because the soureesahdom ellipticities with dis-
persiono,. If the sources have a number densitgconsidering them to be all at the same redshift for
simplicity), the error in the measurement of the averagean annulus of radiu® and widthAR is

oy = %(QWRnAR)_l/Q : (4.5)

The error in the quantity’,, is then given by

Oe¢

N 2/mnR2\/1 — R?/R%

Jei (4.6)

The mean value af', averaged over a large sample of clusters depends on the isizsition
of the clusters and any cosmological parameters that afiecverage halo density profiles. Ideally,
if a sample of clusters is selected in a perfectly controlley, one can predict their mean density
profile and the functiorC5. The density profile is affected by neutrinos, and if all othkysical
factors and selection effects influencing the mean densitfii@ are correctly known and taken into
account, the presence of neutrinos may be detected frombibened shape of the cluster shear
profile using weak lensing.

As a specific example, we consider the c&se= fR;, wheref is a constant that we fix to
f = 2. In Figure5, the functionC(R) = k(R) — k(fR) is plotted for four cases, with cluster
masses ol0'° h~1 M, and10' =1 M, atz = 0.4, and masse$0'°h~1 M, and10'* =1 M, at
z = 1. The sources are assumed to lie altat= 1.5.

The effect of neutrinos is to modify the observable funct@p(R) by a fractional amount
ACy/Cy, where ACy is calculated for the neutrino density profile in the same asy'; for the
total mass profile. This ratio is plotted in Figuddor various neutrino masses and for two different
dark matter halo masses. The ratio increases with neutrass @nd grows with radius because the
neutrino density profile is extended. For the cases thatheners the fractional weak lensing effect
of neutrinos does not change much with halo mass, althowgblibervable effect\C';, obviously
increases with halo mass, as shown in Figure

The predicted neutrino effect is very small, and it mightyolsé observable as a perturbation
in the mean cluster shear profile by averaging over manyeaskisThe requirement for detecting the
neutrino effect can be estimated by considering the clustéigure5 with a halo mas30'® A1 M,
atz = 0.4, and sources with number density= 30 arcmin—2 located at: = 1.5 and at the radius
r1 = 2 Mpc (corresponding to 6 arc minutes). The Brror onCy isoc = 0.002 if we useo, = 0.2,
while its value isC¢(r1) ~ 0.01. Therefore, we may reach an accuracy of 20% on the measuremen
of C with a single cluster. To be able to measure the differenteedsn different neutrino models
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Figure 6. Fractional neutrino perturbation on the weak lensing f@ofiC; /C/, versus radius, for the cluster
masses and neutrino masses indicated. The left panel ikigters at: = 0.4, and the right panel at = 1.

of ACt/Cy < 0.01, as expected from Figuré for a neutrino mass df.3 eV, one would need to
average the measurement of the shear over 10000 clustdrtain a 5¢ result.

This is approximately the number of massive clusters thghtrbe observed in an all-sky weak
lensing survey of sufficient depth. Therefore, the measargrof the neutrino perturbation on the
mean density profile of clusters is extremely difficult. Apfsom the need to observe a very large
number of clusters to reduce the statistical error, sydiermacertainties would in practice be even
more difficult to resolve. The theoretical prediction foethrecise density profile in the absence of
neutrinos needs to be sufficiently reliable, but this praBlaffected by several variables that may
be hard to control: the precise selection function of chssté different masses and different spatial
orientations and projection effects would need to be atelyranodeled using numerical simulations
of structure formation, and the contribution from baryornsuld be subject to uncertainties related
to radiative cooling, galactic winds, and generally the &gt galaxy formation may alter the mass
distribution. The detection of the gravitational effechefutrinos from lensing seems therefore a very
difficult challenge.

The calculation presented in this paper should be congldenéy as an illustrative case. In
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Figure 7. Neutrino perturbation on the weak lensing profile(’s, versus radius, for the same cluster and
neutrino masses as in FigueLeft panel is for halos at = 0.4 and right panel at = 1.

practice, a better approach for attempting to measure tisering effects of neutrinos may be to
examine directly the power spectrum and bispectrum of thekvensing shear over the whole field,
thereby avoiding the issue of selection effects in a clusaenple. However, this would necessarily
average out the effects of neutrinos in the regions wherng dhe strongest, in massive clusters of
galaxies. The cross-correlation of lensing shear with imasgalaxies or diffuse X-ray emission

that are associated with clusters would also likely be suittigesimilar uncertainties arising from the

precise selection function.

5 Conclusion

We have presented the clustering of relic neutrinos arophérical dark matter for various illus-
trative cases. Neutrinos produce an extended distributianass with a large core determined by
their primordial thermal velocities, which cause a perdtidn on the total density profile. The non-
linear collapse of neutrinos in massive clusters shouldifpdiokir impact on the overall mass power
spectrum of fluctuations calculated in the linear regime.

The presence of the neutrino perturbation in the averages iassity profile of clusters of
galaxies using weak gravitational lensing would constitutemarkable astrophysical detection of the
cosmic relic neutrinos, which cannot be detected by anyrdh@wvn method, except for their linear
contribution to the total matter power spectrum. Howeugis theasurement is a very difficult one
owing to the small contribution that neutrinos make to thestdr mass even at very large radius. For
a neutrino mass of 0.3 eV, the largest value that is comeatiith current experimental constraints,
the lensing shear profile of a massive cluster is affecteddutrimos roughly at the level of 1%.
This small signal can only be detected by averaging lensiagsurements over observable clusters
in a large fraction of the sky. Although this observation t@ndone with an all-sky weak lensing
space mission, such as the planned EUCLID mission, sysitennratertainties related to the impact
of physical effects such as the distribution of baryons &edorecise cluster selection function would
make this detection a difficult one.
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