1,552 research outputs found

    Solving multi-scale low frequency electromagnetic problems

    Get PDF
    In this paper, we will discuss two methods to tackle the low-frequency, multi-scale electromagnetics problem. First we will discuss the augmented electric field integral equation (AEFIE), and then, we will discuss the equivalence principle algorithm (EPA). The AEFIE allows the solution of such problems without the need to perform a loop search of a complex structure. The EPA allows the separation of circuit physics from wave physics in a multiscale problem. Hybridization of these two methods will be discussed.published_or_final_versionThe 4th European Conference on Antennas and Propagation (EuCAP) 2010, Barcelona, Spain, 12-16 April 2010. In Proceedings of the 4th EuCAP, 2010, p. 1-

    Numerical investigation of viscous effects on the gap resonance between side-by-side barges

    Get PDF
    This paper presents a numerical study of the gap resonance between two side-by-side barges by using a multiphase Navier-Stokes equations model. In order to verify the multiphase flow model, it is firstly applied to simulate a two-dimensional gap resonance problem for two fixed boxes under various wave conditions. A comparison of the free surface elevations obtained on successively refined grids confirms the mesh convergence of numerical solutions. The calculated wave elevation response amplitude operators (RAOs) in the gap compare well with the experimental measurements. The multiphase flow model is further extended to calculate a three-dimensional gap resonance problem for two adjacent rectangular barges. The computed free surface RAOs in the gap also agree well with the experimental results. A close examination of the flow velocity and vorticity in the gap region at the piston resonant mode reveals that large amount of vortices are generated by the sharp corners of the two barges and shed downwards, which provide an effective mechanism to dissipate the flow kinematic energy and to reduce the wave elevation in the gap. On the contrary, rounded corners are not able to induce the same level amount of vortices to dampen the gap resonance. The effects of incident wave steepness on the viscous damping associated with the twin-barge system are highlighted

    Modelling wave interaction with deformable structures based on a multi-region approach within OpenFOAM

    Get PDF
    © 2017 by the International Society of Offshore and Polar Engineers (ISOPE). This paper presents the development of a multi-region computational fluid-structure dynamics (CFSD) method which is integrated in our virtual wave structure interaction solver wsiFoam, based on the open-source OpenFOAM library, in order to account for the hydro-elastic effects produced by violent wave impacts against deformable bodies. This strategy relies entirely on the finite volume method (FVM) and does not require any third-party solvers, which renders it suitable for efficient parallel computing. We validate this novel approach against previous experimental and numerical results corresponding to a dam break of water impacting on a highly deformable plate as well as a flexible wedge entering water at a constant speed. In general, our preliminary results agree qualitatively well with previous data whilst the performance of parallel implementation evidences the potential of this method to be used in future high performing computing (HPC) applications

    A GPU based compressible multiphase hydrocode for modelling violent hydrodynamic impact problems

    Get PDF
    This paper presents a GPU based compressible multiphase hydrocode for modelling violent hydrodynamic impacts under harsh conditions such as slamming and underwater explosion. An effort is made to extend a one-dimensional five-equation reduced model (Kapila et al., 2001) to compute three-dimensional hydrodynamic impact problems on modern graphics hardware. In order to deal with free-surface problems such as water waves, gravitational terms, which are initially absent from the original model, are now considered and included in the governing equations. A third-order finite volume based MUSCL scheme is applied to discretise the integral form of the governing equations. The numerical flux across a mesh cell face is estimated by means of the HLLC approximate Riemann solver. The serial CPU program is firstly parallelised on multi-core CPUs with the OpenMP programming model and then further accelerated on many-core graphics processing units (GPUs) using the CUDA C programming language. To balance memory usage, computing efficiency and accuracy on multi- and many-core processors, a mixture of single and double precision floating-point operations is implemented. The most important data like conservative flow variables are handled with double-precision dynamic arrays, whilst all the other variables/arrays like fluxes, residual and source terms are treated in single precision. Several benchmark test cases including water-air shock tubes, one-dimensional liquid cavitation tube, dam break, 2D cylindrical underwater explosion near a planar rigid wall, 3D spherical explosion in a rigid cylindrical container and water entry of a 3D rigid flat plate have been calculated using the present approach. The obtained results agree well with experiments, exact solutions and other independent numerical computations. This demonstrates the capability of the present approach to deal with not only violent free-surface impact problems but also hull cavitation associated with underwater explosions. Performance analysis reveals that the running time cost of numerical simulations is dramatically reduced by use of GPUs with much less consumption of electrical energy than on the CPU

    Review of multi-scale electromagnetic modeling

    Get PDF
    This paper reviews various methods to solve multiscale problems ranging from low-frequency methods to very high-frequency methods. ©2010 IEEE.published_or_final_versionThe 2010 International Conference on Electromagnetics in Advanced Applications (ICEAA), Sydney, N.S.W., 20-24 September 2010. In Proceedings of ICEAA'10, 2010, p. 641-64

    Pure and aerated water entry of a flat plate

    Get PDF
    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University’s COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading

    Enhancement mode operation in AlInN/GaN (MIS)HEMTs on Si substrates using a fluorine implant

    Get PDF
    We have demonstrated enhancement mode operation of AlInN/GaN (MIS)HEMTs on Si substrates using the fluorine treatment technique. The plasma RF power and treatment time was optimized to prevent the penetration of the fluorine into the channel region to maintain high channel conductivity and transconductance. An analysis of the threshold voltage was carried out which defined the requirement for the fluorine sheet concentration to exceed the charge at the dielectric/AlInN interface to achieve an increase in the positive threshold voltage after deposition of the dielectric. This illustrates the importance of control of both the plasma conditions and the interfacial charge for a reproducible threshold voltage. A positive threshold voltage of +3 V was achieved with a maximum drain current of 367 mA mm−1 at a forward gate bias of 10 V.The authors acknowledge financial support from the Engineering and Physics Sciences Research Council (EPSRC) under EP/K014471/1 (Silicon Compatible GaN Power Electronics)

    All-GaN Integrated Cascode Heterojunction Field Effect Transistors

    Get PDF
    All-GaN integrated cascode heterojunction field effect transistors were designed and fabricated for power switching applications. A threshold voltage of +2 V was achieved using a fluorine treatment and a metal-insulator-semiconductor gate structure on the enhancement mode part. The cascode device exhibited an output current of 300 mA/mm by matching the current drivability of both enhancement and depletion mode parts. The optimisation was achieved by shifting the threshold voltage of the depletion mode section to a more negative value with the addition of a dielectric layer under the gate. The switching performance of the cascode was compared to the equivalent GaN enhancement-mode-only device by measuring the hard switching speed at 200 V under an inductive load in a double pulse tester. For the first time, we demonstrate the switching speed advantage of the cascode over equivalent GaN enhancement-mode-only devices, due to the reduced Miller-effect and the unique switching mechanisms. These observations suggest that practical power switches at high power and high switching frequency will benefit as part of an integrated cascode configuration.This work was funded by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom, under EP/K014471/1 (Silicon Compatible GaN Power Electronics)

    Novel GaN-based vertical heterostructure field effect transistor structures using crystallographic KOH etching and overgrowth

    Get PDF
    A novel V-groove vertical heterostructure field effect transistor structure is proposed using semi-polar (11-22) GaN. A crystallographic potassium hydroxide self-limiting wet etching technique was developed to enable a damage-free V-groove etching process. An AlGaN/GaN HFET structure was successfully regrown by molecular beam epitaxy on the V-groove surface. A smooth AlGaN/GaN interface was achieved which is an essential requirement for the formation of a high mobility channel.This work was funded by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom, under EP/K014471/1 (Silicon Compatible GaN Power Electronics)

    Field Emission Properties and Fabrication of CdS Nanotube Arrays

    Get PDF
    A large area arrays (ca. 40 cm2) of CdS nanotube on silicon wafer are successfully fabricated by the method of layer-by-layer deposition cycle. The wall thicknesses of CdS nanotubes are tuned by controlling the times of layer-by-layer deposition cycle. The field emission (FE) properties of CdS nanotube arrays are investigated for the first time. The arrays of CdS nanotube with thin wall exhibit better FE properties, a lower turn-on field, and a higher field enhancement factor than that of the arrays of CdS nanotube with thick wall, for which the ratio of length to the wall thickness of the CdS nanotubes have played an important role. With increasing the wall thickness of CdS nanotube, the enhancement factorβdecreases and the values of turn-on field and threshold field increase
    • …
    corecore