810 research outputs found

    Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization

    Full text link
    © 2015 Elsevier Ltd. All rights reserved. Random walk on heterogeneous networks is a recently emerging approach to effective disease gene prioritization. Laplacian normalization is a technique capable of normalizing the weight of edges in a network. We use this technique to normalize the gene matrix and the phenotype matrix before the construction of the heterogeneous network, and also use this idea to define the transition matrices of the heterogeneous network. Our method has remarkably better performance than the existing methods for recovering known gene-phenotype relationships. The Shannon information entropy of the distribution of the transition probabilities in our networks is found to be smaller than the networks constructed by the existing methods, implying that a higher number of top-ranked genes can be verified as disease genes. In fact, the most probable gene-phenotype relationships ranked within top 3 or top 5 in our gene lists can be confirmed by the OMIM database for many cases. Our algorithms have shown remarkably superior performance over the state-of-the-art algorithms for recovering gene-phenotype relationships. All Matlab codes can be available upon email request

    Cover to Volume 3

    Get PDF
    The fibroblast mitogen platelet-derived growth factor -BB (PDGF-BB) induces a transient expression of the orphan nuclear receptor NR4A1 (also named Nur77, TR3 or NGFIB). The aim of the present study was to investigate the pathways through which NR4A1 is induced by PDGF-BB and its functional role. We demonstrate that in PDGF-BB stimulated NIH3T3 cells, the MEK1/2 inhibitor CI-1040 strongly represses NR4A1 expression, whereas Erk5 downregulation delays the expression, but does not block it. Moreover, we report that treatment with the NF-κB inhibitor BAY11-7082 suppresses NR4A1 mRNA and protein expression. The majority of NR4A1 in NIH3T3 was found to be localized in the cytoplasm and only a fraction was translocated to the nucleus after continued PDGF-BB treatment. Silencing NR4A1 slightly increased the proliferation rate of NIH3T3 cells; however, it did not affect the chemotactic or survival abilities conferred by PDGF-BB. Moreover, overexpression of NR4A1 promoted anchorage-independent growth of NIH3T3 cells and the glioblastoma cell lines U-105MG and U-251MG. Thus, whereas NR4A1, induced by PDGF-BB, suppresses cell growth on a solid surface, it increases anchorage-independent growth

    Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice

    Get PDF
    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal-contractile coupling

    Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G. barbadense

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cotton, with a large genome, is an important crop throughout the world. A high-density genetic linkage map is the prerequisite for cotton genetics and breeding. A genetic map based on simple polymerase chain reaction markers will be efficient for marker-assisted breeding in cotton, and markers from transcribed sequences have more chance to target genes related to traits. To construct a genome-wide, functional marker-based genetic linkage map in cotton, we isolated and mapped expressed sequence tag-simple sequence repeats (EST-SSRs) from cotton ESTs derived from the A<sub>1</sub>, D<sub>5</sub>, (AD)<sub>1</sub>, and (AD)<sub>2 </sub>genome.</p> <p>Results</p> <p>A total of 3177 new EST-SSRs developed in our laboratory and other newly released SSRs were used to enrich our interspecific BC<sub>1 </sub>genetic linkage map. A total of 547 loci and 911 loci were obtained from our EST-SSRs and the newly released SSRs, respectively. The 1458 loci together with our previously published data were used to construct an updated genetic linkage map. The final map included 2316 loci on the 26 cotton chromosomes, 4418.9 cM in total length and 1.91 cM in average distance between adjacent markers. To our knowledge, this map is one of the three most dense linkage maps in cotton. Twenty-one segregation distortion regions (SDRs) were found in this map; three segregation distorted chromosomes, Chr02, Chr16, and Chr18, were identified with 99.9% of distorted markers segregating toward the heterozygous allele. Functional analysis of SSR sequences showed that 1633 loci of this map (70.6%) were transcribed loci and 1332 loci (57.5%) were translated loci.</p> <p>Conclusions</p> <p>This map lays groundwork for further genetic analyses of important quantitative traits, marker-assisted selection, and genome organization architecture in cotton as well as for comparative genomics between cotton and other species. The segregation distorted chromosomes can be a guide to identify segregation distortion loci in cotton. The annotation of SSR sequences identified frequent and rare gene ontology items on each chromosome, which is helpful to discover functions of cotton chromosomes.</p

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Role of leukocyte cell-derived chemotaxin 2 as a biomarker in hepatocellular carcinoma

    Get PDF
    We sought to identify a secreted biomarker for β-catenin activation commonly seen in hepatocellular carcinoma (HCC). By examination of our previously published genearray of hepatocyte-specific β-catenin knockout (KO) livers, we identified secreted factors whose expression may be β-catenin-dependent. We verified expression and secretion of the leading factor in HCC cells transfected with mutated (Hep3BS33Y)-β- catenin. Serum levels of biomarker were next investigated in a mouse model of HCC with β-catenin gene (Ctnnb1) mutations and eventually in HCC patients. Leukocyte cell-derived chemotaxin-2 (LECT2) expression was decreased in KO livers. Hep3BS33Y expressed and secreted more LECT2 in media as compared to Hep3BWT. Mice developing HCC with Ctnnb1 mutations showed significantly higher serum LECT2 levels. However patients with CTNNB1 mutations showed LECT2 levels of 54.28±22.32 ng/mL (Mean ± SD; n = 8) that were insignificantly different from patients with non-neoplastic chronic liver disease (32.8±21.1 ng/mL; n = 15) or healthy volunteers (33.2±7.2 ng/mL; n = 11). Intriguingly, patients without β-catenin mutations showed significantly higher serum LECT2 levels (54.26 ± 22.25 ng/mL; n = 46). While β-catenin activation was evident in a subset of non-mutant β-catenin HCC group with high LECT2 expression, serum LECT2 was unequivocally similar between β-catenin-active and -normal group. Further analysis showed that LECT2 levels greater than 50 ng/ml diagnosed HCC in patients irrespective of β-catenin mutations with specificity of 96.1% and positive predictive value of 97.0%. Thus, LECT2 is regulated by β-catenin in HCC in both mice and men, but serum LECT2 reflects β-catenin activity only in mice. Serum LECT2 could be a potential biomarker of HCC in patients. © 2014 Okabe et al

    A Missense Mutation in PPARD Causes a Major QTL Effect on Ear Size in Pigs

    Get PDF
    Chinese Erhualian is the most prolific pig breed in the world. The breed exhibits exceptionally large and floppy ears. To identify genes underlying this typical feature, we previously performed a genome scan in a large scale White Duroc × Erhualian cross and mapped a major QTL for ear size to a 2-cM region on chromosome 7. We herein performed an identical-by-descent analysis that defined the QTL within a 750-kb region. Historically, the large-ear feature has been selected for the ancient sacrificial culture in Erhualian pigs. By using a selective sweep analysis, we then refined the critical region to a 630-kb interval containing 9 annotated genes. Four of the 9 genes are expressed in ear tissues of piglets. Of the 4 genes, PPARD stood out as the strongest candidate gene for its established role in skin homeostasis, cartilage development, and fat metabolism. No differential expression of PPARD was found in ear tissues at different growth stages between large-eared Erhualian and small-eared Duroc pigs. We further screened coding sequence variants in the PPARD gene and identified only one missense mutation (G32E) in a conserved functionally important domain. The protein-altering mutation showed perfect concordance (100%) with the QTL genotypes of all 19 founder animals segregating in the White Duroc × Erhualian cross and occurred at high frequencies exclusively in Chinese large-eared breeds. Moreover, the mutation is of functional significance; it mediates down-regulation of β-catenin and its target gene expression that is crucial for fat deposition in skin. Furthermore, the mutation was significantly associated with ear size across the experimental cross and diverse outbred populations. A worldwide survey of haplotype diversity revealed that the mutation event is of Chinese origin, likely after domestication. Taken together, we provide evidence that PPARD G32E is the variation underlying this major QTL
    corecore