12 research outputs found

    Quantifying indices of short- and long-range white matter connectivity at each cortical vertex.

    Get PDF
    Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders

    Quantifying indices of short- and long-range white matter connectivity at each cortical vertex

    No full text
    Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders

    Discovering the sense of touch: Protocol for a randomised controlled trial examining the efficacy of a somatosensory discrimination intervention for children with hemiplegic cerebral palsy

    Get PDF
    Background: Of children with hemiplegic cerebral palsy, 75% have impaired somatosensory function, which contributes to learned non-use of the affected upper limb. Currently, motor learning approaches are used to improve upper-limb motor skills in these children, but few studies have examined the effect of any intervention to ameliorate somatosensory impairments. Recently, Sense© training was piloted with a paediatric sample, seven children with hemiplegic cerebral palsy, demonstrating statistically and clinically significant change in limb position sense, goal performance and bimanual hand-use. This paper describes a protocol for a Randomised Controlled Trial of Sense© for Kids training, hypothesising that its receipt will improve somatosensory discrimination ability more than placebo (dose-matched Goal Directed Therapy via Home Program). Secondary hypotheses include that it will alter brain activation in somatosensory processing regions, white-matter characteristics of the thalamocortical tracts and improve bimanual function, activity and participation more than Goal Directed Training via Home Program. Methods and design: This is a single blind, randomised matched-pair, placebo-controlled trial. Participants will be aged 6-15years with a confirmed description of hemiplegic cerebral palsy and somatosensory discrimination impairment, as measured by the sense©_assess Kids. Participants will be randomly allocated to receive 3h a week for 6weeks of either Sense© for Kids or Goal Directed Therapy via Home Program. Children will be matched on age and severity of somatosensory discrimination impairment. The primary outcome will be somatosensory discrimination ability, measured by sense©_assess Kids score. Secondary outcomes will include degree of brain activation in response to a somatosensory task measured by functional MRI, changes in the white matter of the thalamocortical tract measured by diffusion MRI, bimanual motor function, activity and participation. Discussion: This study will assess the efficacy of an intervention to increase somatosensory discrimination ability in children with cerebral palsy. It will explore clinically important questions about the efficacy of intervening in somatosensation impairment to improve bimanual motor function, compared with focusing on motor impairment directly, and whether focusing on motor impairment alone can affect somatosensory ability
    corecore