414 research outputs found

    Fracture Assessment of the Weld–Base Metal Interface of High-Strength Steel Weld Joint

    No full text
    The brittle fracture of the weld joint at low stresses is controlled by high-strength steel characteristics and welding defects. Based on fracture mechanics, the fracture behavior of the weldbase metal interface of a high-strength steel weld joint was studied to reveal the critical locations of the latter. From tensile fracture experiments of 45 steel welded specimens, the load–displacement curve and the fracture modes of weld joints were obtained. The results indicate that the critical loads and fracture modes are influenced by the crack slope angle. The maximum load of interface fracture in weld joints is less than that of the failure in the base metal mainly related to the existence of initial defects in the weld joint. The fracture surface morphology was also detected. It is considered that the fracture surface is influenced by different fracture locations and different microstructure of the weld and base metals. In addition, the critical stress intensity factors of a weld interface crack were calculated based on the critical load and the finite element linear extrapolation method. The linear fracture assessment criteria were proposed, which will be applicable to safety evaluation for the weld joints of high-strength steel structures.Хрупкое разрушение сварного соединения при низких напряжениях зависит от характеристик высокопрочной стали и дефектов сварки. Принципы механики разрушения послужили основой изучения поведения поверхности контакта металл сварного шва–основной металл при разрушении сварного соединения высокопрочной стали для выявления критических точек на последнем. По результатам испытаний на разрушение при растяжении сварных образцов из стали 45 построена кривая прогиб–нагрузка и получены виды изломов на сварных соединениях. Показано, что угол наклона трещины оказывает влияние на критические нагрузки и виды изломов. Максимальная нагрузка, вызывающая разрушение поверхности контакта сварного соединения, ниже нагрузки разрушения основного металла, которое зависит главным образом от дефектов, изначально присутствовавших в сварном соединении. Установлены морфология поверхности излома и влияние на нее месторасположения изломов и микроструктуры металла сварного шва и основного металла. Критические коэффициенты интенсивности напряжений для трещины на поверхности контакта рассчитывали на основании критической нагрузки с помощью конечноэлементного метода линейной экстраполяции. Предложены критерии оценки линейного разрушения, которые могут быть использованы для проверки надежности сварных соединений в конструкциях из высокопрочной стали

    Numerical Analysis of Crack Propagation Path Using an Advanced Element Cracking Method

    No full text
    The determination of the crack path is important for predicting the unexpected failures or assessing fatigue life in engineering material. To simulate the crack path under mixed mode loading using a finite element model, a new local element cracking technique was proposed. The waiting cracking element was divided into two units along crack propagation direction based on the maximum circumference ( 0) KII criterion. Then, the information of element number and nodal number was also modified and singular elements were avoided by the transfixion method. With advantages of small remeshing only on a local region, this method also examined three classic problems of stationary crack growth, i.e., edge crack propagation in double cantilever beam, mode I cracking in an asphalt concrete beam, a crack in typical longitudinal connection of large natural gas carriers. The calculated stress intensity factors and the predicted crack trajectories using this method agree well with the theoretical solutions existing in literature. Optimal design of structure against failure by fast fracture is discussed.Определение траектории трещины является важным при прогнозировании непредвиденного разрушения или при оценке усталостной долговечности конструкционного материала. Предложен новый метод моделирования траектории локальной трещины при нагружении смешанного типа с помощью модели, основанной на методе конечных элементов. Элемент, моделирующий трещину, разбивают на два вдоль распространения трещины с использованием критерия максимальных касательных напряжений (KII 0). Затем изменяется информация о номерах элемента и узла, поскольку метод трансфикции исключает использование сингулярных элементов. Преимущества незначительного перестроения конечноэлементной сетки только в локальной зоне позволили исследовать с помощью предложенного метода три классические проблемы роста стационарной трещины, т.е. распространение краевой трещины в двухконсольной балке, моделирование трещинообразования в асфальтобетонных балках и трещина в стандартном продольном соединении в газопроводе. Расчетный коэффициент интенсивности напряжений и траектория трещины, спрогнозированная с помощью описанного метода, хорошо соответствуют теоретическим данным, представленным в литературных источниках. Рассмотрена оптимальная конструкция структуры, которой несвойственно быстрое разрушение.Визначення траєкторії тріщини є важливим при прогнозуванні непередбачуваного руйнування або при оцінці довговічності від утомленості конструкційного матеріалу. Запропоновано новий метод моделювання траєкторії локальної тріщини під час навантаження змішаного типу за допомогою моделі, що базується на методі скінченних елементів. Елемент, що моделює тріщину, розбивають на два вздовж поширення тріщини з використанням критерію максимальних дотичних напружень ( ). KII 0 Далі змінюється інформація щодо номерів елемента і вузла, оскільки метод трансфікції виключає використання сингулярних елементів. Переваги незначної перебудови скінченноелементної сітки тільки в локальній зоні дозволили за допомогою запропонованого методу дослідити три класичні проблеми росту стаціонарної тріщини: поширення краєвої тріщини в двоконсольній балці, моделювання тріщиноутворення в асфальтобетонних балках і тріщина в стандартному поздовжньому з’єднанні у газопроводі. Розрахунковий коефіцієнт інтенсивності напружень і траєкторія тріщини, спрогнозована за допомогою описаного методу, добре відповідають теоретичним даним, представленим у літературних джерелах. Розглянуто оптимальну конструкцію структури, якій невластиве швидке руйнування

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψγϕϕγK+KKS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.240.02+0.030.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.030.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψγη(2225))Br(η(2225)ϕϕ)=(4.4±0.4±0.8)×104Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Measurements of the observed cross sections for e+ee^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+eπ+ππ0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+Kπ0π0K^+K^-\pi^0\pi^0, 2(π+ππ0)2(\pi^+\pi^-\pi^0), K+Kπ+ππ0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+μ+X)BF(D0μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    A study of charged kappa in J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58×10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged K(892)±K^*(892)^{\pm}, the charged κ\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849±7714+18)i(256±4022+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/ψK(892)+K(892)J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00±0.190.32+0.11)×103(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψγηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+Kπ+π\gamma K^+K^-\pi^+\pi^-, γπ+ππ+π\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π\gamma K^\pm K^0_S \pi^\mp (with KS0π+πK^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕK+K\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
    corecore