2,333 research outputs found

    Biscale Chaos in Propagating Fronts

    Full text link
    The propagating chemical fronts found in cubic autocatalytic reaction-diffusion processes are studied. Simulations of the reaction-diffusion equation near to and far from the onset of the front instability are performed and the structure and dynamics of chemical fronts are studied. Qualitatively different front dynamics are observed in these two regimes. Close to onset the front dynamics can be characterized by a single length scale and described by the Kuramoto-Sivashinsky equation. Far from onset the front dynamics exhibits two characteristic lengths and cannot be modeled by this amplitude equation. An amplitude equation is proposed for this biscale chaos. The reduction of the cubic autocatalysis reaction-diffusion equation to the Kuramoto-Sivashinsky equation is explicitly carried out. The critical diffusion ratio delta, where the planar front loses its stability to transverse perturbations, is determined and found to be delta=2.300.Comment: Typeset using RevTeX, fig.1 and fig.4 are not available, mpeg simulations are at http://www.chem.utoronto.ca/staff/REK/Videos/front/front.htm

    Noisy Kuramoto-Sivashinsky equation for an erosion model

    Get PDF
    We derive the continuum equation for a discrete model for ion sputtering. We follow an approach based on the master equation, and discuss how it can be truncated to a Fokker-Planck equation and mapped to a discrete Langevin equation. By taking the continuum limit, we arrive at the Kuramoto-Sivashinsky equation with a stochastic noise term.Comment: latex (w/ multicol.sty), 4 pages; to appear in Physical Review E (Oct 1996

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201

    Combined potential and spin impurity scattering in cuprates

    Full text link
    We present a theory of combined nonmagnetic and magnetic impurity scattering in anisotropic superconductors accounting for the momentum-dependent impurity potential. Applying the model to the d-wave superconducting state, we obtain a quantitative agreement with the initial suppression of the critical temperature due to Zn and Ni substitutions as well as electron irradiation defects in the cuprates. We suggest, that the unequal pair-breaking effect of Zn and Ni may be related to a different nature of the magnetic moments induced by these impurities.Comment: 5 pages, 3 tables, RevTex, to be published in Phys. Rev.

    Renormalization Group Analysis of a Noisy Kuramoto-Sivashinsky Equation

    Get PDF
    We have analyzed the Kuramoto-Sivashinsky equation with a stochastic noise term through a dynamic renormalization group calculation. For a system in which the lattice spacing is smaller than the typical wavelength of the linear instability occurring in the system, the large-distance and long-time behavior of this equation is the same as for the Kardar-Parisi-Zhang equation in one and two spatial dimensions. For the d=2d=2 case the agreement is only qualitative. On the other hand, when coarse-graining on larger scales the asymptotic flow depends on the initial values of the parameters.Comment: 8 pages, 5 figures, revte

    Charge Imbalance Effects on Interlayer Hopping and Fermi Surfaces in Multilayered High-T_c Cuprates

    Full text link
    We study doping dependence of interlayer hoppings, t_\perp, in multilayered cuprates with four or more CuO_2 planes in a unit cell. When the double occupancy is forbidden in the plane, an effective amplitude of t_\perp in the Gutzwiller approximation is shown to be proportional to the square root of the product of doping rates in adjacent two planes, i.e., t^eff_\perp \propto t_\perp \sqrt{\delta_1\delta_2}, where \delta_1 and \delta_2 represent the doping rates of the two planes. More than three-layered cuprates have two kinds of \cuo planes, i.e., inner- and outer planes (IP and OP), resulting in two different values of t^eff_{\perp}, i.e., t^eff_\perp 1 \propto t_\perp \sqrt{\delta_IP \delta_IP} between IP's, and t^eff_\perp 2 \propto t_\perp \sqrt{\delta_IP \delta_OP} between IP and OP. Fermi surfaces are calculated in the four-layered t-t'-t''-J model by the mean-field theory. The order parameters, the renormalization factor of t_\perp, and the site-potential making the charge imbalance between IP and OP are self-consistently determined for several doping rates. We show the interlayer splitting of the Fermi surfaces, which may be observed in the angle resolved photoemission spectroscopy measurement.Comment: Some typographical errors are revised. Journal of Physical Society of Japan, Vol.75, No.3, in pres

    Pain and Interference of Pain With Function and Mood in Elderly Adults Involved in a Motor Vehicle Collision: A Pilot Study

    Get PDF
    Musculoskeletal pain after motor vehicle collision is a substantial public health problem. The number of elderly individuals experiencing motor vehicle collision is increasing. We conducted analyses of data collected as part of a prospective observational study of outcomes after motor vehicle collision to estimates rates of persistent pain, pain interference, and change in physical function in patients 65 or older

    Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade

    Get PDF
    The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement
    • …
    corecore