682 research outputs found

    Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation

    Full text link
    The Josephson effects associated with quantum tunneling of Cooper pairs manifest as nonlinear relations between the superconductivity phase difference and the bias current and voltage. Many novel phenomena appear, such as Shapiro steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under microwave shining, which can be used as a voltage standard. Inversely, the Josephson effects provide a unique way to generate high-frequency electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate high-Tc superconductors accelerated the effort to develop novel source of EM waves based on a stack of atomically dense-packed intrinsic Josephson junctions (IJJs), since the large superconductivity gap covers the whole terahertz frequency band. Very recently, strong and coherent terahertz radiations have been successfully generated from a mesa structure of Bi2Sr2CaCu2O8+δ\rm{Bi_2Sr_2CaCu_2O_{8+\delta}} single crystal which works both as the source of energy gain and as the cavity for resonance. It is then found theoretically that, due to huge inductive coupling of IJJs produced by the nanometer junction separation and the large London penetration depth of order of μm\rm{\mu m} of the material, a novel dynamic state is stabilized in the coupled sine-Gordon system, in which ±π\pm \pi kinks in phase differences are developed responding to the standing wave of Josephson plasma and are stacked alternatively in the c-axis. This novel solution of the inductively coupled sine-Gordon equations captures the important features of experimental observations. The theory predicts an optimal radiation power larger than the one available to date by orders of magnitude, and thus suggests the technological relevance of the phenomena.Comment: review article (69 pages, 30 figures

    The Unseen Face of E-Business Project Development

    Get PDF
    The purpose of this paper is intent on identify and analyze the unseen factors of successful or failure of e-business project development. The IT managers must take into account both all costs involved in e-business development and all phases (analysis, design, testing, implementation, maintenance and operation) according to principle of project management for software/systems life cycle development. There are many solutions to exceed these factors of failure among could be counted outsourcing, a good project management, involvement of senior management, a real cost estimation etc.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej nauk

    Electronic spin working mechanically

    Get PDF
    A single-electron tunneling (SET) device with a nanoscale central island that can move with respect to the bulk source- and drain electrodes allows for a nanoelectromechanical (NEM) coupling between the electrical current through the device and mechanical vibrations of the island. Although an electromechanical "shuttle" instability and the associated phenomenon of single-electron shuttling were predicted more than 15 years ago, both theoretical and experimental studies of NEM-SET structures are still carried out. New functionalities based on quantum coherence, Coulomb correlations and coherent electron-spin dynamics are of particular current interest. In this article we present a short review of recent activities in this area.Comment: 17 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1303.074

    Composite excitation of Josephson phase and spin waves in Josephson junctions with ferromagnetic insulator

    Full text link
    Coupling of Josephson-phase and spin-waves is theoretically studied in a superconductor/ferromagnetic insulator/superconductor (S/FI/S) junction. Electromagnetic (EM) field inside the junction and the Josephson current coupled with spin-waves in FI are calculated by combining Maxwell and Landau-Lifshitz-Gilbert equations. In the S/FI/S junction, it is found that the current-voltage (I-V) characteristic shows two resonant peaks. Voltages at the resonant peaks are obtained as a function of the normal modes of EM field, which indicates a composite excitation of the EM field and spin-waves in the S/FI/S junction. We also examine another type of junction, in which a nonmagnetic insulator (I) is located at one of interfaces between S and FI. In such a S/I/FI/S junction, three resonant peaks appear in the I-V curve, since the Josephson-phase couples to the EM field in the I layer.Comment: 16 pages, 5 figure

    Josephson Coupling through a Quantum Dot

    Full text link
    We derive, via fourth order perturbation theory, an expression for the Josephson current through a gated interacting quantum dot. We analyze our expression for two different models of the superconductor-dot-superconductor (SDS) system. When the matrix elements connecting dot and leads are featureless constants, we compute the Josephson coupling J_c as a function of the gate voltage and Coulomb interaction. In the diffusive dot limit, we compute the probability distribution P(J_c) of Josephson couplings. In both cases, pi junction behavior (J_c < 0) is possible, and is not simply dependent on the parity of the dot occupancy.Comment: 9 pages; 3 encapsulated PostScript figure

    Anharmonic Josephson current in junctions with an interface pair breaking

    Full text link
    Planar superconducting junctions with a large effective Josephson coupling constant and a pronounced interface pair breaking are shown to represent weak links with small critical currents and strongly anharmonic current-phase relations. The supercurrent near Tc is described taking into account the interface pair breaking as well as the current depairing and the Josephson coupling-induced pair breaking of arbitrary strengths. A new analytical expression for the anharmonic supercurrent, which is in excellent agreement with the numerical data presented, is obtained. In junctions with a large effective Josephson coupling constant and a pronounced interface pair breaking, the current-induced depairing is substantially enhanced in the vicinity of the interface thus having a crucial influence on the current-phase relation despite a small depairing in the bulk.Comment: 5 pages, 2 figures, published versio

    Polarization state of a biphoton: quantum ternary logic

    Get PDF
    Polarization state of biphoton light generated via collinear frequency-degenerate spontaneous parametric down-conversion is considered. A biphoton is described by a three-component polarization vector, its arbitrary transformations relating to the SU(3) group. A subset of such transformations, available with retardation plates, is realized experimentally. In particular, two independent orthogonally polarized beams of type-I biphotons are transformed into a beam of type-II biphotons. Polarized biphotons are suggested as ternary analogs of two-state quantum systems (qubits)

    Mesoscopic fluctuations of the supercurrent in diffusive Josephson junctions

    Full text link
    We study mesoscopic fluctuations and weak localization correction to the supercurrent in Josephson junctions with coherent diffusive electron dynamics in the normal part. Two kinds of junctions are considered: a chaotic dot coupled to superconductors by tunnel barriers and a diffusive junction with transparent normal--superconducting interfaces. The amplitude of current fluctuations and the weak localization correction to the average current are calculated as functions of the ratio between the superconducting gap and the electron dwell energy, temperature, and superconducting phase difference across the junction. Technically, fluctuations on top of the spatially inhomogeneous proximity effect in the normal region are described by the replicated version of the \sigma-model. For the case of diffusive junctions with transparent interfaces, the magnitude of mesoscopic fluctuations of the critical current appears to be nearly 3 times larger than the prediction of the previous theory which did not take the proximity effect into account.Comment: 19 pages, 14 figures, 2 table

    Josephson-phase qubit without tunneling

    Full text link
    We show that a complete set of one-bit gates can be realized by coupling the two logical states of a phase qubit to a third level (at higher energy) using microwave pulses. Thus, one can achieve coherent control without invoking any tunneling between the qubit levels. We propose two implementations, using rf-SQUIDs and d-wave Josephson junctions.Comment: REVTeX4, 4pp., 6 EPS figure files; N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. v2: gate universality fleshed out, small fix in d-wave decoherence para, discussion expanded, two Refs. added. v3: some more Refs., a molecular example, and a few minor fixes; final, to appear in PRB Rapid

    Josephson currents through spin-active interfaces

    Full text link
    The Josephson coupling of two isotropic s-wave superconductors through a small, magnetically active junction is studied. This is done as a function of junction transparency and of the degree of spin-mixing occurring in the barrier. In the tunneling limit, the critical current shows an anomalous 1/T temperature dependence at low temperatures and for certain magnetic realizations of the junction. The behavior of the Josephson current is governed by Andreev bound states appearing within the superconducting gap and the position of these states in energy is tunable with the magnetic properties of the barrier. This study is done using the equilibrium part of the quasiclassical Zaitsev-Millis-Rainer-Sauls boundary condition for spin-active interfaces and a general solution of the boundary condition is found. This solution is a generalization of the one recently presented by Eschrig [M. Eschrig, Phys. Rev B 61, 9061 (2000)] for spin-conserving interfaces and allows an effective treatment of the problem of a superconductor in proximity to a magnetically active material.Comment: 8 pages + 3 eps figure
    corecore