A single-electron tunneling (SET) device with a nanoscale central island that
can move with respect to the bulk source- and drain electrodes allows for a
nanoelectromechanical (NEM) coupling between the electrical current through the
device and mechanical vibrations of the island. Although an electromechanical
"shuttle" instability and the associated phenomenon of single-electron
shuttling were predicted more than 15 years ago, both theoretical and
experimental studies of NEM-SET structures are still carried out. New
functionalities based on quantum coherence, Coulomb correlations and coherent
electron-spin dynamics are of particular current interest. In this article we
present a short review of recent activities in this area.Comment: 17 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1303.074