132 research outputs found

    Effect of pulsed power on particle matter in diesel engine exhaust using a DBD plasma reactor

    Get PDF
    Nonthermal plasma (NTP) treatment of exhaust gas is a promising technology for both nitrogen oxides (NOX) and particulate matter (PM) reduction by introducing plasma into the exhaust gases. This paper considers the effect of NTP on PM mass reduction, PM size distribution, and PM removal efficiency. The experiments are performed on real exhaust gases from a diesel engine. The NTP is generated by applying high-voltage pulses using a pulsed power supply across a dielectric barrier discharge (DBD) reactor. The effects of the applied high-voltage pulses up to 19.44 kVpp with repetition rate of 10 kHz are investigated. In this paper, it is shown that the PM removal and PM size distribution need to be considered both together, as it is possible to achieve high PM removal efficiency with undesirable increase in the number of small particles. Regarding these two important factors, in this paper, 17 kVpp voltage level is determined to be an optimum point for the given configuration. Moreover, particles deposition on the surface of the DBD reactor is found to be a significant phenomenon, which should be considered in all plasma PM removal tests

    A review of biomass burning: Emissions and impacts on air quality, health and climate in China

    Full text link
    Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Worldwide an extensive range of studies has been conducted on almost all the aspects of BB, including its specific types, on quantification of emissions and on assessing its various impacts. China is one of the countries where the significance of BB has been recognized, and a lot of research efforts devoted to investigate it, however, so far no systematic reviews were conducted to synthesize the information which has been emerging. Therefore the aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China. In addition, this review provides insights into the role of wildfire and anthropogenic BB on air quality and health globally. Further, we attempted to provide a basis for formulation of policies and regulations by policy makers in China

    The role of non-thermal plasma technique in NOx treatment : a review

    Get PDF
    Non-thermal plasma (NTP) has been introduced over the past several years as a promising method for nitrogen oxide (NOx) removal. The intent, when using NTP, is to selectively transfer input electrical energy to the electrons, and to not expend this in heating the entire gas stream, which generates free radicals through collisions, and promotes the desired chemical changes in the exhaust gases. The generated active species react with the pollutant molecules and decompose them. This paper reviews and summarizes relevant literature regarding various aspects of the application of NTP technology on NOx removal from exhaust gases. A comprehensive description of available scientific literature on NOx removal using NTP technology is presented, including various types of NTP, e.g. dielectric barrier discharge, corona discharge and electron beam. Furthermore, the combination of NTP with catalyst and adsorbent for better NOx removal efficiency is presented in detail. The removal of NOx from both simulated gases and real diesel engines is also considered in this review paper. As NTP is a new technique and is not yet commercialized, there is a need for more studies to be performed in this field

    Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    Get PDF
    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been obtained during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted

    Biomass burning at Cape Grim: exploring photochemistry using multi-scale modelling

    Get PDF
    We have tested the ability of a high-resolution chemical transport model (CTM) to reproduce biomass burning (BB) plume strikes and ozone (O3) enhancements observed at Cape Grim in Tasmania, Australia, from the Robbins Island fire. The CTM has also been used to explore the contribution of near-field BB emissions and background sources to O3 observations under conditions of complex meteorology. Using atmospheric observations, we have tested model sensitivity to meteorology, BB emission factors (EFs) corresponding to low, medium, and high modified combustion efficiency (MCE), and spatial variability. The use of two different meteorological models (TAPM–CTM and CCAM–CTM) varied the first (BB1) plume strike time by up to 15 h and the duration of impact between 12 and 36 h, and it varied the second (BB2) plume duration between 50 and 57 h. Meteorology also had a large impact on simulated O3, with one model (TAPM–CTM) simulating four periods of O3 enhancement, while the other model (CCAM) simulating only one period. Varying the BB EFs, which in turn varied the non-methane organic compound (NMOC) ∕ oxides of nitrogen (NOx) ratio, had a strongly non-linear impact on simulated O3 concentration, with either destruction or production of O3 predicted in different simulations. As shown in previous work (Lawson et al., 2015), minor rainfall events have the potential to significantly alter EF due to changes in combustion processes. Models that assume fixed EF for O3 precursor species in an environment with temporally or spatially variable EF may be unable to simulate the behaviour of important species such as O3. TAPM–CTM is used to further explore the contribution of the Robbins Island fire to the observed O3 enhancements during BB1 and BB2. Overall, TAPM–CTM suggests that the dominant source of O3 observed at Cape Grim was aged urban air (age  = 2 days), with a contribution of O3 formed from local BB emissions. This work shows the importance of assessing model sensitivity to meteorology and EF and the large impact these variables can have in particular on simulated destruction or production of O3 in regional atmospheric chemistry simulations. This work also shows the importance of using models to elucidate the contribution from different sources to atmospheric composition, where this is difficult using observations alone

    Effect of cold start on engine performance and emissions from diesel engines using IMO-Compliant distillate fuels

    Full text link
    © 2019 Elsevier Ltd Emissions from ships at berth are small compared to the total ship emissions; however, they are one of the main contributors to pollutants in the air of densely-populated areas, consequently heavily affecting public health. This is due to auxiliary marine engines being used to generate electric power and steam for heating and providing services. The present study has been conducted on an engine representative of a marine auxiliary, which was a heavy duty, six-cylinder, turbocharged and after-cooled engine with a high pressure common rail injection system. Engine performance and emission characterisations during cold start are the focus of this paper, since cold start is significantly influential. Three tested fuels were used, including the reference diesel and two IMO (International Maritime Organization) compliant spiked fuels. The research engine was operated at a constant speed and 25% load condition after 12 h cooled soak. Results show that during cold start, significant heat generated from combustion is used to heat the engine block, coolant and lubricant. During the first minute, compared to the second minute, emissions of particle number (PN), carbon monoxide (CO), particulate matter (PM), and nitrogen oxides (NOx) were approximately 10, 4, 2 and 1.5 times higher, respectively. The engine control unit (ECU) plays a vital role in reducing engine emissions by changing the engine injection strategy based on the engine coolant temperature. IMO-compliant fuels, which were higher viscosity fuels associated with high sulphur content, resulted in an engine emission increase during cold start. It should be taken into account that auxiliary marine diesel engines, working at partial load conditions during cold start, contribute considerably to emissions in coastal areas. It demonstrates a need to implement practical measures, such as engine pre-heating, to obtain both environmental and public health advantages in coastal areas

    Cough-generated aerosols of Pseudomonas aeruginosa and other Gram-negative bacteria from patients with cystic fibrosis

    Get PDF
    Background: Pseudomonas aeruginosa is the most common bacterial pathogen in cystic fibrosis (CF) patients. Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. We hypothesized that with coughing, CF subjects produce viable, respirable bacterial aerosols. Methods: Cross-sectional study of 15 children and 13 adults with CF, 26 chronically infected with P. aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different size, and culture of viable Gram negative non-fermentative bacteria. We collected cough aerosols during 5 minutes voluntary coughing and during a sputum induction procedure when tolerated. Standardized quantitative culture and genotyping techniques were used. Results: P. aeruginosa was isolated in cough aerosols of 25 (89%) subjects of whom 22 produced sputum samples. P. aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In 4 cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles ≤ 3.3 microns aerodynamic diameter. P. aeruginosa, Burkholderia cenocepacia Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (P=0.003). The magnitude of cough aerosols were associated with higher FEV1 (r=0.45, P=0.02) and higher quantitative sputum culture results (r=0.58, P=0.008). Conclusion: During coughing, CF patients produce viable aerosols of P. aeruginosa and other Gram negative bacteria of respirable size range, suggesting the potential for airborne transmission

    Intercomparison Study of Six HTDMAs: Results and Recommendations

    Get PDF
    We report on an intercomparison of six different hygroscopicity tandem differential mobility analysers (HTDMAs). These HTDMAs are used worldwide in laboratory experiments and field campaigns to measure the water uptake of aerosol particles and have never been intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and data analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instruments and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.JRC.H.2-Climate chang

    Emissions and performance with diesel and waste lubricating oil : a fundamental study into cold start operation with a special focus on particle number size distribution

    Get PDF
    This study investigates the effect of engine temperature during cold start and hot start engine operation on particulate matter emissions and engine performance parameters. In addition to a fundamental study on cold start operation and the effect of lubricating oil during combustion, this research introduces important knowledge about regulated particulate number emissions and particulate size distribution during cold start, which is an emerging area in the literature. A further aspect of this work is to introduce waste lubricating oil as a fuel. By using diesel and two blends of diesel with 1 and 5% waste lubricating oil in a 6-cylinder turbocharged engine on a cold start custom test, this investigation studied particle number (PN), friction losses and combustion instability with diesel and waste lubricating oil fuel blends. In order to understand and explain the results the following were also studied: particle size distribution and median diameter, engine oil, coolant and exhaust gas temperatures, start of injection, friction mean effective pressure (FMEP), mechanical efficiency, coefficient of variation (CoV) of engine speed, CoV of indicated mean effective pressure (IMEP) and maximum rate of pressure rise were also studied. The results showed that during cold start the increase in engine temperature was associated with an increase in PN and size of particles, and a decrease in FMEP and maximum rate of pressure rise. Compared to a warmed up engine, during cold start, PN, start of injection and mechanical efficiency were lower; while FMEP, CoV of IMEP and maximum rate of pressure rise were higher. Adding 5% waste lubricating oil to the fuel was associated with a decrease in PN (during cold start), decreased particle size, maximum rate of pressure rise and CoV of IMEP and was associated with an increase in PN and nucleation mode particles (during hot start) and FME

    Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP) campaign

    Get PDF
    Establishing the relationship between marine boundary layer (MBL) aerosols and surface water biogeochemistry is required to understand aerosol and cloud production processes over the remote ocean and represent them more accurately in earth system models and global climate projections. This was addressed by the SOAP (Surface Ocean Aerosol Production) campaign, which examined air–sea interaction over biologically productive frontal waters east of New Zealand. This overview details the objectives, regional context, sampling strategy and provisional findings of a pilot study, PreSOAP, in austral summer 2011 and the following SOAP voyage in late austral summer 2012. Both voyages characterized surface water and MBL composition in three phytoplankton blooms of differing species composition and biogeochemistry, with significant regional correlation observed between chlorophyll a and DMSsw. Surface seawater dimethylsulfide (DMSsw) and associated air–sea DMS flux showed spatial variation during the SOAP voyage, with maxima of 25 nmol L−1 and 100 µmol m−2 d−1, respectively, recorded in a dinoflagellate bloom. Inclusion of SOAP data in a regional DMSsw compilation indicates that the current climatological mean is an underestimate for this region of the southwest Pacific. Estimation of the DMS gas transfer velocity (kDMS) by independent techniques of eddy covariance and gradient flux showed good agreement, although both exhibited periodic deviations from model estimates. Flux anomalies were related to surface warming and sea surface microlayer enrichment and also reflected the heterogeneous distribution of DMSsw and the associated flux footprint. Other aerosol precursors measured included the halides and various volatile organic carbon compounds, with first measurements of the short-lived gases glyoxal and methylglyoxal in pristine Southern Ocean marine air indicating an unidentified local source. The application of a real-time clean sector, contaminant markers and a common aerosol inlet facilitated multi-sensor measurement of uncontaminated air. Aerosol characterization identified variable Aitken mode and consistent submicron-sized accumulation and coarse modes. Submicron aerosol mass was dominated by secondary particles containing ammonium sulfate/bisulfate under light winds, with an increase in sea salt under higher wind speeds. MBL measurements and chamber experiments identified a significant organic component in primary and secondary aerosols. Comparison of SOAP aerosol number and size distributions reveals an underprediction in GLOMAP (GLObal Model of Aerosol Processes)-mode aerosol number in clean marine air masses, suggesting a missing marine aerosol source in the model. The SOAP data will be further examined for evidence of nucleation events and also to identify relationships between MBL composition and surface ocean biogeochemistry that may provide potential proxies for aerosol precursors and production
    • …
    corecore