98 research outputs found
Generating the cosmic microwave background power asymmetry with g(NL)
We consider a higher order term in the expansion for the CMB power
asymmetry generated by a superhorizon isocurvature field fluctuation. The term
can generate the asymmetry without requiring a large value of . Instead
it produces a non-zero value of . A combination of constraints lead to
an allowed region in space. To produce the asymmetry with this
term without a large value of we find that the isocurvature field
needs to contribute less than the inflaton towards the power spectrum of the
curvature perturbation.Comment: 6 pages, 1 figure. Updated to match published version. Minor
typographical correction
Numerical evaluation of the bispectrum in multiple field inflation
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, including (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantum and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or 'in-in' formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with |fNL| of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method
Transplanckian axions !?
We discuss quantum gravitational effects in Einstein theory coupled to
periodic axion scalars to analyze the viability of several proposals to achieve
superplanckian axion periods (aka decay constants) and their possible
application to large field inflation models. The effects we study correspond to
the nucleation of euclidean gravitational instantons charged under the axion,
and our results are essentially compatible with (but independent of) the Weak
Gravity Conjecture, as follows: Single axion theories with superplanckian
periods contain gravitational instantons inducing sizable higher harmonics in
the axion potential, which spoil superplanckian inflaton field range. A similar
result holds for multi-axion models with lattice alignment (like the
Kim-Nilles-Peloso model). Finally, theories with axions can still achieve a
moderately superplanckian periodicity (by a factor) with no higher
harmonics in the axion potential. The Weak Gravity Conjecture fails to hold in
this case due to the absence of some instantons, which are forbidden by a
discrete gauge symmetry. Finally we discuss the realization of
these instantons as euclidean D-branes in string compactifications.Comment: 46 pages, 6 figures. Added references, clarifications, and missing
factor of 1/2 to instanton action. Conclusions unchange
Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle
The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature's primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics
Scale-dependent non-Gaussianity and the CMB power asymmetry
We introduce an alternative parametrisation for the scale dependence of the non–linearity parameter fNL in quasi-local models of non–Gaussianity. Our parametrisation remains valid when fNL changes sign, unlike the commonly adopted power law ansatz fNL(k) ∝ knfNL. We motivate our alternative parametrisation by appealing to the self-interacting curvaton scenario, and as an application, we apply it to the CMB power asymmetry. Explaining the power asymmetry requires a strongly scale dependent non-Gaussianity. We show that regimes of model parameter space where fNL is strongly scale dependent are typically associated with a large gNL and quadrupolar power asymmetry, which can be ruled out by existing observational constraints
Enhanced effects of cigarette smoke extract on inflammatory cytokine expression in IL-1β-activated human mast cells were inhibited by Baicalein via regulation of the NF-κB pathway
Background: Human mast cells are capable of a wide variety of inflammatory responses and play a vital role in the pathogenesis of inflammatory diseases such as allergy, asthma, and atherosclerosis. We have reported that cigarette smoke extract (CSE) significantly increased IL-6 and IL-8 production in IL-1β-activated human mast cell line (HMC-1). Baicalein (BAI) has anti-inflammatory properties and inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from HMC-1. The goal of the present study was to examine the effect of BAI on IL-6 and IL-8 production from CSE-treated and IL-1β-activated HMC-1.Methods: Main-stream (Ms) and Side-stream (Ss) cigarette smoke were collected onto fiber filters and extracted in RPMI-1640 medium. Two ml of HMC-1 at 1 × 10 6 cells/mL were cultured with CSE in the presence or absence of IL-1β (10 ng/mL) for 24 hrs. A group of HMC-1 cells stimulated with both IL-1β (10 ng/ml) and CSE was also treated with BAI. The expression of IL-6 and IL-8 was assessed by ELISA and RT-PCR. NF-κB activation was measured by electrophoretic mobility shift assay (EMSA) and IκBα degradation by Western blot.Results: Both Ms and Ss CSE significantly increased IL-6 and IL-8 production (p \u3c 0.001) in IL-1β-activated HMC-1. CSE increased NF-κB activation and decreased cytoplasmic IκBα proteins in IL-1β-activated HMC-1. BAI (1.8 to 30 μM) significantly inhibited production of IL-6 and IL-8 in a dose-dependent manner in IL-1β-activated HMC-1 with the optimal inhibition concentration at 30 μM, which also significantly inhibited the enhancing effect of CSE on IL-6 and IL-8 production in IL-1β-activated HMC-1. BAI inhibited NF-κB activation and increased cytoplasmic IκBα proteins in CSE-treated and IL-1β-activated HMC-1.Conclusions: Our results showed that CSE significantly increased inflammatory cytokines IL-6 and IL-8 production in IL-1β-activated HMC-1. It may partially explain why cigarette smoke contributes to lung and cardiovascular diseases. BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation. This inhibitory effect of BAI on the expression of inflammatory cytokines induced by CSE suggests its usefulness in the development of novel anti-inflammatory therapies
The hemispherical asymmetry from a scale-dependent inflationary bispectrum
If the primordial bispectrum is sufficiently large then the CMB hemispherical asymmetry may be explained by a large-scale mode of exceptional amplitude which perturbs the zeta two-point function. We extend previous calculations, which were restricted to one- or two-source scenarios, by providing a method to compute the response of the two-point function in any model yielding a 'local-like' bispectrum. In general, this shows that it is not the reduced bispectrum fNL which sources the amplitude and scale-dependence of the mode coupling but rather a combination of 'response functions'. We discuss why it is difficult to construct successful scenarios and enumerate the fine-tunings which seem to be required. Finally, we exhibit a concrete model which can be contrived to match the observational constraints and show that to a Planck-like experiment it would appear to have |fNL-local| ~ |fNL-equi| ~ |fNL-ortho| ~ 1. Therefore, contrary to previous analyses, we conclude that it is possible to generate the asymmetry while respecting observational constraints on the bispectrum and low-ell multipoles even without tuning our location on the long-wavelength mode
Goldstone inflation
Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its potential. Successful Goldstone Inflation should also be robust against UV corrections, such as from quantum gravity: in the language of the effective field theory this implies that all scales are sub-Planckian. In this paper we present scenarios which realise both requirements by examining the structure of Goldstone potentials arising from Coleman-Weinberg contributions. We focus on single-field models, for which we notice that both bosonic and fermionic contributions are required and that spinorial fermion representations can generate the right potential shape. We then evaluate the constraints on non-Gaussianity from higher-derivative interactions, finding that axiomatic constraints on Goldstone boson scattering prevail over the current CMB measurements. The fit to CMB data can be connected to the UV completions for Goldstone Inflation, finding relations in the spectrum of new resonances. Finally, we show how hybrid inflation can be realised in the same context, where both the inflaton and the waterfall fields share a common origin as Goldstones
The separate universe approach to soft limits
We develop a formalism for calculating soft limits of -point inflationary
correlation functions using separate universe techniques. Our method naturally
allows for multiple fields and leads to an elegant diagrammatic approach. As an
application we focus on the trispectrum produced by inflation with multiple
light fields, giving explicit formulae for all possible single- and double-soft
limits. We also investigate consistency relations and present an infinite tower
of inequalities between soft correlation functions which generalise the
Suyama-Yamaguchi inequality.Comment: 28 pages, 7 figures. This is an author-created, un-copyedited version
of an article published in JCAP. IOP Publishing Ltd is not responsible for
any errors or omissions in this version of the manuscript or any version
derived from it. The Version of Record is available online at the DOI below.
v3: Updated to match version published in JCA
Linking Symptom Inventories using Semantic Textual Similarity
An extensive library of symptom inventories has been developed over time to
measure clinical symptoms, but this variety has led to several long standing
issues. Most notably, results drawn from different settings and studies are not
comparable, which limits reproducibility. Here, we present an artificial
intelligence (AI) approach using semantic textual similarity (STS) to link
symptoms and scores across previously incongruous symptom inventories. We
tested the ability of four pre-trained STS models to screen thousands of
symptom description pairs for related content - a challenging task typically
requiring expert panels. Models were tasked to predict symptom severity across
four different inventories for 6,607 participants drawn from 16 international
data sources. The STS approach achieved 74.8% accuracy across five tasks,
outperforming other models tested. This work suggests that incorporating
contextual, semantic information can assist expert decision-making processes,
yielding gains for both general and disease-specific clinical assessment
- …