20 research outputs found

    Lie symmetry and μ-symmetry methods for nonlinear generalized Camassa–Holm equation

    Get PDF
    Abstract In this paper, a Lie symmetry method is used for the nonlinear generalized Camassa–Holm equation and as a result reduction of the order and computing the conservation laws are presented. Furthermore, μ-symmetry and μ-conservation laws of the generalized Camassa–Holm equation are obtained

    On similarity and pseudo-similarity solutions of Falkner-Skan boundary layers

    Full text link
    The present work deals with the two-dimensional incompressible,laminar, steady-state boundary layer equations. First, we determinea family of velocity distributions outside the boundary layer suchthat these problems may have similarity solutions. Then, we examenin detail new exact solutions, called Pseudo--similarity, where the external velocity varies inversely-linear with the distance along the surface $ (U_e(x) = U_\infty x^{-1}). The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. Then, we examenin detail new exact solutions. The analysis shows that solutions exist only for a lateral suction. For specified conditions, we establish the existence of an infinite number of solutions, including monotonic solutions and solutions which oscillate an infinite number of times and tend to a certain limit. The properties of solutions depend onthe suction parameter. Furthermore, making use of the fourth--order Runge--Kutta scheme together with the shooting method, numerical solutions are obtained.Comment: 15 page

    Numerical treatment of first order delay differential equations using extended block backward differentiation formulae

    No full text
    In this research, we developed and implemented extended backward differentiation methods (formulae) in block forms for step numbers k = 2, 3 and 4 to evaluate numerical solutions for certain first-order differential equations of delay type, generally referred to as delay differential equations (DDEs), without the use of interpolation methods for estimating the delay term. The matrix inversion approach was applied to formulate the continuous composition of these block methods through linear multistep collocation method. The discrete schemes were established through the continuous composition for each step number, which evaluated the error constants, order, consistency, convergent and area of absolute equilibrium of these discrete schemes. The study of the absolute error results revealed that, as opposed to the exact solutions, the lower step number implemented with super futures points work better than the higher step numbers implemented with super future points
    corecore