12 research outputs found

    Molecular Function of TCF7L2: Consequences of TCF7L2 Splicing for Molecular Function and Risk for Type 2 Diabetes.

    Get PDF
    TCF7L2 harbors the variant with the strongest effect on type 2 diabetes (T2D) identified to date, yet the molecular mechanism as to how variation in the gene increases the risk for developing T2D remains elusive. The phenotypic changes associated with the risk genotype suggest that T2D arises as a consequence of reduced islet mass and/or impaired function, and it has become clear that TCF7L2 plays an important role for several vital functions in the pancreatic islet. TCF7L2 comprises 17 exons, five of which are alternative (ie, exons 4 and 13-16). In pancreatic islets four splice variants of TCF7L2 are predominantly expressed. The regulation of these variants and the functional consequences at the protein level are still poorly understood. A clear picture of the molecular mechanism will be necessary to understand how an intronic variation in TCF7L2 can influence islet function

    Data from: Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears

    No full text
    Grizzly bears (Ursus arctos horribilis) have evolved remarkable metabolic adaptations including enormous fat accumulation during the active season followed by fasting during hibernation. However, these fluctuations in body mass do not cause the same harmful effects associated with obesity in humans. To better understand these seasonal transitions, we performed insulin and glucose tolerance tests in captive grizzly bears, characterized the annual profiles of circulating adipokines, and tested the anorectic effects of centrally administered leptin at different times of the year. We also used bear gluteal adipocyte cultures to test insulin and beta-adrenergic sensitivity in vitro. Bears were insulin resistant during hibernation but were sensitive during the spring and fall active periods. Hibernating bears remained euglycemic, possibly due to hyperinsulinemia and hyperglucagonemia. Adipokine concentrations were relatively low throughout the active season but peaked in mid-October prior to hibernation when fat content was greatest. Serum glycerol was highest during hibernation, indicating ongoing lipolysis. Centrally administered leptin reduced food intake in October, but not in August, revealing seasonal variation in the brain’s sensitivity to its anorectic effects. This was supported by strong phosphorylated signal transducer and activator of transcription 3 labeling within the hypothalamus of hibernating bears; labeling virtually disappeared in active bears. Adipocytes collected during hibernation were insulin resistant when cultured with hibernation serum but became sensitive when cultured with active season serum. Heat treatment of active serum blocked much of this action. Clarifying the cellular mechanisms responsible for the physiology of hibernating bears may inform new treatments for metabolic disorders

    Applied optics to engineering photonics: a retrospective

    No full text

    Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears

    No full text
    corecore