27,566 research outputs found
Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film
We report the tunability of the exchange bias effect by the first-order
metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5
nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey
transition, the exchange bias field is substantially enhanced because of a
sharp increase in magnetocrystalline anisotropy constant from high-temperature
cubic to lowtemperature monoclinic structure. Moreover, with respect to the
Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4
(40 nm)/MgO (001) bilayer is greatly increased for all the temperature range,
which would be due to the coupling between Co spins and Fe spins across the
interface
Investigation of the energy dependence of the orbital light curve in LS 5039
LS 5039 is so far the best studied -ray binary system at
multi-wavelength energies. A time resolved study of its spectral energy
distribution (SED) shows that above 1 keV its power output is changing along
its binary orbit as well as being a function of energy. To disentangle the
energy dependence of the power output as a function of orbital phase, we
investigated in detail the orbital light curves as derived with different
telescopes at different energy bands. We analysed the data from all existing
\textit{INTEGRAL}/IBIS/ISGRI observations of the source and generated the most
up-to-date orbital light curves at hard X-ray energies. In the -ray
band, we carried out orbital phase-resolved analysis of \textit{Fermi}-LAT data
between 30 MeV and 10 GeV in 5 different energy bands. We found that, at
100 MeV and 1 TeV the peak of the -ray emission is
near orbital phase 0.7, while between 100 MeV and 1 GeV it moves
close to orbital phase 1.0 in an orbital anti-clockwise manner. This result
suggests that the transition region in the SED at soft -rays (below a
hundred MeV) is related to the orbital phase interval of 0.5--1.0 but not to
the one of 0.0--0.5, when the compact object is "behind" its companion. Another
interesting result is that between 3 and 20 GeV no orbital modulation is found,
although \textit{Fermi}-LAT significantly (18) detects LS 5039.
This is consistent with the fact that at these energies, the contributions to
the overall emission from the inferior conjunction phase region (INFC, orbital
phase 0.45 to 0.9) and from the superior conjunction phase region (SUPC,
orbital phase 0.9 to 0.45) are equal in strength. At TeV energies the power
output is again dominant in the INFC region and the flux peak occurs at phase
0.7.Comment: 7 pages, 6 figures, accepted for publication in MNRA
Recommended from our members
Postsynaptic protein organization revealed by electron microscopy.
Neuronal synapses are key devices for transmitting and processing information in the nervous system. Synaptic plasticity, generally regarded as the cellular basis of learning and memory, involves changes of subcellular structures that take place at the nanoscale. High-resolution imaging methods, especially electron microscopy (EM), have allowed for quantitative analysis of such nanoscale structures in different types of synapses. In particular, the semi-ordered organization of neurotransmitter receptors and their interacting scaffolds in the postsynaptic density have been characterized for both excitatory and inhibitory synapses by studies using various EM techniques such as immuno-EM, electron tomography of high-pressure freezing and freeze-substituted samples, and cryo electron tomography. These techniques, in combination with new correlative approaches, will further facilitate our understanding of the molecular organization underlying diverse functions of neuronal synapses
Energetics and energy scaling of quasi-monoenergetic protons in laser radiation pressure acceleration
Theoretical and computational studies of the ion energy scaling of the radiation pressure acceleration of an ultra-thin foil by short pulse intense laser irradiation are presented. To obtain a quasi-monoenergetic ion beam with an energy spread of less than 20%, two-dimensional particle-in-cell simulations show that the maximum energy of the quasi-monoenergetic ion beam is limited by self-induced transparency at the density minima caused by the Rayleigh-Taylor instability. For foils of optimal thickness, the time over which Rayleigh-Taylor instability fully develops and transparency occurs is almost independent of the laser amplitude. With a laser power of about one petawatt, quasi-monogenetic protons with 200 MeV and carbon ions with 100 MeV per nucleon can be obtained, suitable for particle therapy applications
Accumulation of Dense Core Vesicles in Hippocampal Synapses Following Chronic Inactivity.
The morphology and function of neuronal synapses are regulated by neural activity, as manifested in activity-dependent synapse maturation and various forms of synaptic plasticity. Here we employed cryo-electron tomography (cryo-ET) to visualize synaptic ultrastructure in cultured hippocampal neurons and investigated changes in subcellular features in response to chronic inactivity, a paradigm often used for the induction of homeostatic synaptic plasticity. We observed a more than 2-fold increase in the mean number of dense core vesicles (DCVs) in the presynaptic compartment of excitatory synapses and an almost 20-fold increase in the number of DCVs in the presynaptic compartment of inhibitory synapses after 2 days treatment with the voltage-gated sodium channel blocker tetrodotoxin (TTX). Short-term treatment with TTX and the N-methyl-D-aspartate receptor (NMDAR) antagonist amino-5-phosphonovaleric acid (AP5) caused a 3-fold increase in the number of DCVs within 100 nm of the active zone area in excitatory synapses but had no significant effects on the overall number of DCVs. In contrast, there were very few DCVs in the postsynaptic compartments of both synapse types under all conditions. These results are consistent with a role for presynaptic DCVs in activity-dependent synapse maturation. We speculate that these accumulated DCVs can be released upon reactivation and may contribute to homeostatic metaplasticity
Recommended from our members
Study of quasi-distributed optical fiber methane sensors based on laser absorption spectrometry
The coal industry plays an important role in the economic development of China. With the increase of coal mining year by year, coal mine accidents caused by gas explosion also occur frequently, which poses a serious threat to the life safety of absenteeism and national property safety. Therefore, high-precision methane fiber sensor is of great significance to ensure coal mine safety. This paper mainly introduces two kinds of quasi-distributed gas optical fiber sensing systems based on laser absorption spectroscopy. The gas fiber optic sensor based on absorption spectrum has high measurement accuracy, fast response and long service life. One is quasi-distributed optical fiber sensing system based on spatial division multiplexing (SDM) technology and the other is quasi-distributed optical fiber sensing system based on optical time domain reflection and time division multiplexing(TDM) technology
Statefinder Parameters for Five-Dimensional Cosmology
We study the statefinder parameter in the five-dimensional big bounce model,
and apply it to differentiate the attractor solutions of quintessence and
phantom field. It is found that the evolving trajectories of these two
attractor solutions in the statefinder parameters plane are quite different,
and that are different from the statefinder trajectories of other dark energy
models.Comment: 8 pages, 12 figures. accepted by MPL
- …